- March 14, 2016
- AT&T, backhaul, California ISO, cost per mile, DWDM, E-Band, fiber, fiber optic technology, FierceWireless, IP/MPLS, Layer 3, RCR Wireless, Re/code, SDN, software defined networking, Sprint, urban backhaul, Verizon, Wireless Week
In late January and into February 2016, a big tumult ensued when Sprint announced that it would begin to move its mobile backhaul strategy from one based on leased fiber to another based on owned microwave radio. The story first ran in technology news site Re/code and quickly got reposted with additional commentary by FierceWireless, Wireless Week and others, and which was reiterated this week in RCR Wireless.
While the breathtaking headlines about reducing costs by $1 billion caught most people’s attention—primarily through reducing tower leasing costs and not using competitors’ networks—lower down in the copy came a potent reminder from Sprint about the economic benefits of microwave radio. It also highlighted the fact that backhaul has entered a transitional period (see article end for more on that).
Most of that $1 billion that Sprint seeks to save comes by way of moving away from AT&T and Verizon fiber backhaul networks. You might think that Sprint would build its own fiber network instead. But that would take too long and still have an exorbitant price tag associated with it. It’s a function of both out-of-pocket capital costs and embedded lost opportunity costs. Bottom line: laying fiber connections is expensive and slow. Putting up a network of high-speed, broadband microwave relay towers is quicker and easier.
Read More
- February 21, 2014
- 70GHz, 80GHz, backhaul, densification, E-Band, microwave communications, microwave congestion, millimeterwave, small cell, small cell backhaul, small cells, urban backhaul, urbanized backhaul
As the telecom community searches for reasons why Small Cell architectures have not yet launched en masse, “experts” are quick to suggest that lack of backhaul technology as the key perpetrator.
Read More
For years and years, microwave and millimeterwave radio technologies have coexisted without very much overlap in either their markets or applications. Microwave radio served telephone company needs (e.g., long distance backhaul, mobile access aggregation) for the bulk of its implementations with some vertical deployments for oil and gas, public safety and utilities organizations. Typically, licensed bands in service ranged from 6GHz to 42GHz—with 11GHz and under popular for long haul; 18-38GHz trendy for short urban hops. Generally, millimeterwave radio is considered to be between the 60GHz and 80GHz bands and found its applications confined to those for intra-campus communication from building to building for universities, civic centers, other government conglomerations and large, spread-out (i.e., 1 to 5 miles) corporate facilities.
Read More