Demand for mobile data is soaring, and microwave is seen as the primary transport medium in rural and suburban areas. Aviat’s WTM 4000 enables double capacity (2+0) microwave links by housing two transceivers, two diplexers, and a 3dB coupler in one compact all-outdoor solution.
With the current landscape of network economics and challenges associated with capacity and spectrum, having multiple tools for link deployments, capacity growth, and future-proofing are necessary. In this blog, we’ll discuss the concept of Microwave Multi-Band, or the use of two different microwave frequency bands over one link, and specifically the combination of 6 GHz and 11 GHz.
One of the most significant contributors to the total cost of ownership of a microwave transmission network is the antenna sub-system.
By Stuart Little, Director of International Product Line Marketing
Papua New Guinea, or PNG, is one half of the island of New Guinea, along with offshore islands, located in the South Pacific immediately to the north of the Australian continent. The country is rugged and heavily covered by dense rainforest, which presents enormous challenges when it comes to establishing a national communications infrastructure. In most cases, deploying fiber routes is simply not practical nor affordable. Wireless is the only answer in these cases.
By Stuart Little, Director of International Product Line Marketing
In the past years, a few microwave vendors have introduced ‘sub-band free’ RF outdoor units into the market. The main claim of these radios is that a single hardware variant can be deployed in any frequency sub-band, simplifying and lower costs involved with ordering, deployment and sparing of microwave networks.
However, these new radios are not available in all bands and come with a number of limitations, including lower RF performance, larger size, and weight, higher cost, limitations in modulation and channel sizes, amongst others.
To compare how different wireless backhaul network topologies perform under the same operating scenario, let’s analyze how a traditional hub-and-spoke and a ring configuration compare in connecting the same six sites (See table below). For the hub-and-spoke configuration, each cell site is provided 50 Mbps capacity in 1+1 protection. With five links and no path diversity, full protection is the only way to achieve five nines reliability. In this configuration, 10 antennas are employed, which average a large and costly 5.2 feet in diameter. Total cost of ownership for this six-site network is close to $700,000 for five years.
For a ring design for the same six sites, throughput of 200 Mbps is established to carry the traffic for each specific hop and any traffic coming in that direction from farther up the network. Designed to take advantage of higher-level redundancy schemes, the ring configuration only requires antennas that average 2.3 feet in diameter, which are much lower in cost compared to the antennas in the hub-and-spoke configuration. And even though the ring configuration requires 12 antennas and six links, its overall TCO amounts to a little under $500,000 over five years—30 percent less than TCO for the hub-and-spoke design for the same six sites.
This comparison is based upon deployments in the USA, where most operators lease tower space from other providers.
Gary Croke
Senior Product Marketing Manager
Aviat Networks
Related articles
Based on microwave Total Cost of Ownership (TCO) model posted earlier, the most significant contributor to total cost is ongoing OPEX.
We see an increasing trend of operators making decisions on backhaul solution based mostly (sometimes solely) on price (or initial CAPEX). While initial CAPEX is important, if the goal is lowest cost, this can be problematic approach as initial CAPEX it is not the most significant contributor to total cost. Ongoing OPEX is key.
Perhaps a better approach would be to focus on features most impacting lowering total costs. For instance, adaptive coding and modulation can lower antenna sizes – which can reasonably reduce 10 year TCO by as much as $48,000 (which is 2-3x more than initial CAPEX). Deploying ring architectures with high layer (L2/L3 or packet-based) failure recovery techniques can enable lower per hop reliability and smaller antennas – further lowering costs.
Gary Croke
Product Marketing, Aviat Networks
When choosing the right backhaul technology, total cost of a microwave system is a critical, often overlooked, consideration. TCO is not widely understood today. Lack of understanding of microwave TCO can lead to poor decisions about choice in backhaul technology and obscure the relative importance of features. Features that lower critical components of TCO are often not given enough attention.
A summary of a TCO model for a mobile operator in North America is shown below. Clearly, ongoing OPEX resulting from tower leases represent largest contributor to total cost. These lease costs include tower space for antennas and cable runs, shelter/cabinet space and power, and ongoing move/add/change fees regularly paid to tower companies. The largest portion of this tower lease is related to the antenna size. Microwave products and features that enable smaller antennas sizes, less indoor space, and fewer cables are most important for operators.
*Note: for private network applications (like state/local governments, public safety organizations, and utilities) who generally own towers, initial CAPEX is often higher, leading to an overall reduction in ongoing OPEX and TCO.
Make sure to check back next week for post #2 ” How Important is Initial CAPEX?” where I breakdown the true costs of initial and ongoing CAPEX.
Gary Croke
Product Marketing, Aviat Networks