Protection and Diversity: 100 Percent Uptime the Goal

English: BT Thornhill microwave radio tower

The BT Thornhill microwave radio tower above demonstrates a Space Diversity protection scheme with its parabolic antennas placed apart from one another (Photo credit: Peter Facey via Wikipedia)

Traffic disconnect is unacceptable for most microwave systems, especially for homeland security and utilities. But Aviat Networks Principal Engineer Dick Laine says that it is economically unviable to have a microwave radio system that provides absolutely 100 percent uptime to accommodate every possible traffic downtime scenario. He adds that towers, waveguides and all other hardware and infrastructure would have to be completely bulletproof. This is true of every telecommunication system.

However, with protection schemes and diversity arrangements in today’s wireless communication solutions, microwave transmission can get very close to mitigating against long-term traffic outages (i.e., > 10 CSES, consecutive severely errored seconds) and short-term traffic outages (i.e., < 10 CSES).

In pursuit of the 100 percent uptime goal, Dick goes over many of the strategies available in the newest video in the Radio Head Technology Series, for which there is complimentary registration. For example, there are many approaches to protection, including Hot Standby and Space Diversity. In particular, Dick points out Frequency Diversity has advantages over many protection schemes, but few outside the federal government are able to obtain the necessary waivers in order to use it. Hybrid Diversity uses both Space Diversity and Frequency Diversity to create a very strong protection solution. A case study outlining Hybrid Diversity is available.

Other concepts Dick covers in this fifth edition of Radio Heads includes error performance objectives, bit error rate, data throughput, errorless switching, equipment degradation, antenna misalignment, self-healing ring architecture and something called the “Chicken Little” alarm.

Read More


3 Models for Microwave Link Error Performance? Laine Explains

Dick Laine explains ITU-R models

In the second episode of Aviat Networks’ Radio Head Technology Series, Principal Engineer Dick Laine explains ITU-R models for Fixed Wireless Systems.

As most radio engineers know, Vigants calculations, which are discussed in a broadly cited Bell System Technical Journal article, are widely used to determine reliability or error performance for microwave link design. In Video 2 of Aviat Networks’ popular Radio Head Technology Series, which is now available for viewing, Principal Engineer Dick Laine explains how he uses Vigants calculations in conjunction with the three completely separate ITU-R Fixed Wireless System (FWS) models for TDM.

Because of all these models, he likes to use Vigants calculations as a “sanity check” to see that he is close to the correct result for his path engineering plans. The free Aviat Networks’ Starlink wireless path engineering tool can be used to handle Vigants calculations for Aviat Networks’ and other vendors’ equipment.

Can’t wait to hear more of Dick’s experienced views on microwave radio transmission engineering? You can get ahead of the learning curve by registering for the series and get these videos sent to your inbox as soon as they are released.

Read More


Dick Laine’s 4 Keys to Successful Transmission Engineering of Microwave Links

Dick Laine, Principal Engineer, Aviat Networks

Dick Laine, Principal Engineer, Aviat Networks

Transmission engineering of a microwave link requires creativity and skill. So if you are looking for inspiration as well as high-quality wireless engineering instruction look no further than the “Radio Head Technology Series.” Radio Heads is a collection of videos and podcasts featuring our very own Dick Laine. Dick is arguably the most experienced microwave engineer in the wireless communication business, having spent more than 50 years working with microwave radio from its inception—here at Aviat Networks and our predecessor companies (e.g., Farinon, Harris MCD).

Dick has been involved with nearly every aspect of RF transmission, microwave link and network transmission design, and the effects of geoclimatic conditions on transmission of voice and now IP radio data packets.

In his own unique style, Dick has been teaching basic and advanced concepts for digital microwave transmission in seminars and training classes worldwide. Students who have taken his classes return years later eager to get a refresher from Dick and to hear about some of his great adventures in Asia, the Middle East, Africa and in the Americas.

In the first Radio Heads video titled “Check List for a Successful Microwave Link,” Dick explains the four key objectives or requirements for a well-done microwave link design along with “check list” items that the project manager or transmission engineer evaluates for proper design and deployment of a digital microwave link. If you have not already signed up for this video series, register to view the content.

If you find this video of value, please pass along the information to your friends and colleagues via Facebook, Twitter, LinkedIn or your other favorite social media network.

Read More


Subscribe to our newsletter