All-Indoor Microwave: LTE’s Best Backhaul Solution for North American Operators

Eclipse Packet Node IRU600 all-indoor microwave radio

Aviat Networks’ Packet Node IRU600 is an example of an all-indoor microwave radio, which is one choice wireless operators should consider for implementations in North America.

There’s a lot of buzz in the microwave industry about the trend toward all-outdoor radios, but those who haven’t been through LTE deployments may be surprised to learn that based on our experience deploying LTE backhaul for some of the world’s largest LTE networks, all-indoor is actually the best radio architecture for LTE backhaul.

We can debate today’s LTE backhaul capacity requirements, but one thing we do know is that with new advances in LTE technology, the capacity needed is going to grow. This means that microwave radios installed for backhaul will likely have to be upgraded with more capacity over time. Although people are experimenting with compression techniques and very high QAM modulations and other capacity extension solutions, the most proven way to expand capacity is to add radio channels because it represents real usable bandwidth independent of packet sizes, traffic mix and the RF propagation environment.

All-indoor radios are more expensive initially in terms of capital expenditures, but they’re cheaper to expand and (as electronics are accessible without tower climb) are more easily serviced. While an outdoor radio connects to the antenna with Ethernet or coax cable, indoor radios usually need a more expensive waveguide to carry the RF signal from the radio to the antenna. So you pay more up front with an all-indoor radio but as the radio’s capacity grows you save money. There are several reasons.

When everything related to the radio is indoors, you just have a waveguide and an antenna up on the tower. To add radio channels with an all-indoor radio you go into the cabinet and add an RF unit. With an outdoor radio, you have to climb the tower, which can cost as much as $10,000. Also, when you add a new outdoor RF unit you may have to swap out the antenna for a larger one due to extra losses incurred by having to combine radio channels on tower….(read the full story at RCR Wireless).

Gary Croke
Senior Product Marketing Manager
Aviat Networks

Read More


The Modulation Arms Race: A Case of Diminishing Returns

English: A standard Quadrature Amplitude Modul...

A standard Quadrature Amplitude Modulation constellation (non-gray code) diagram showing a demonstrative 4-bit binary code pattern. (Phase offset and amplitude values may not represent those used in real life) (Photo credit: Chris Watts via Wikipedia)

There’s a new arms race in the microwave industry, and it’s over who can claim support for the highest QAM level. Now two vendors are out in the market fighting it out over who had 2048QAM first, yet go back a little more than 12 months and 512 or 1024QAM had barely hit the market. We even are seeing mentions of 4096QAM in some conference presentations. We here at Aviat Networks view these advances as a good thing for our industry, but this heavy marketing of 2048QAM does no one any favors, as it focuses purely on only one aspect of high modulationscapacityand ignores several other aspects that need to be understood, namely:

  • Capacity improvement diminishes with every higher modulation step
  • High modulations come with much lower radio system performancerequires shorter hops and/or larger antennas
  • High modulations are much more sensitive to interferencemakes link coordination difficult (if not impossible)
  • High modulations need higher Tx power, increased phase noise and linearityincreases radio design complexity cost

So as with most things that are presented as a cureall, higher order modulations are a useful tool to help operators address their growing backhaul capacity needs, but the catch is in the fine print. Operators will need to look at all the tools at their disposal, of which 1024/2048QAM is a useful option, albeit one that will require very careful planning and strategic deployment. In general, operators need practical solutions for capacity increases, as detailed in “Improving Microwave Capacity“.  In fact, speaking of practicalities, the real challenges with LTE backhaul has very little to do with capacity…as detailed by this article. For the complete “Modulations Arms Race” article, click here.

Stuart Little
Director, Corporate Marketing
Aviat Networks

Read More


Subscribe to our newsletter

Last chance to register!

Join us in this technical webinar

Deep Dive Demo:
Using Aviat Design for Path Planning

SAVE MY SPOT

Last chance to register!