Is traditional microwave dead? With the advent of Multi-Band, it could be. Why accept an old solution when you can have so much more by combining E-Band and traditional microwave into a single-box unit. Governments are taking action across the world to connect homes and businesses in rural areas to the rest of the world. From the 7-year action plan devised by National Broadband Ireland (NBI) to the Federal Communications Commission’s (FCC) $9.2 billion newly implemented Rural Digital Opportunity Fund, there is a worldwide focus on the connectedness of rural areas. As capacity demands increase rapidly for rural broadband networks, a better solution than traditional microwave is needed.
In many wireless networks, transport engineering looks after the microwave radio function while the IT department has domain over IP equipment. These two organizations started independently and grew separately over many years. It did not seem that there was any problem with this arrangement.
However, it led to the selection of equipment—radios and routers—that worked really well on their own but had no awareness of one another. Not surprisingly, these technology solutions did not perform together optimally.
As one of the most anticipated network technologies, Voice over LTE (VoLTE) has been discussed by operators for years. The expectation was that deployments would start in 2013, but roll-outs in North America were delayed.
Operators have faced a series of issues that include poor voice quality and long call establishment times. Once these problems are solved, it is expected that VoLTE will allow operators to provide voice and data services using an integrated packet network. As the problems described show, the implementation of VoLTE presents challenges for the entire LTE ecosystem including microwave backhaul.
We have produced a white paper to describe some of the VoLTE requirements that must be met in order to overcome these technical challenges, which must encompass a flexible microwave backhaul as a key factor for a successful transition to all-packet voice and video VoLTE networks. A brief introduction to VoLTE is presented and then different VoLTE backhaul requirements are described with possible solutions.
Click here to download a white paper on this subject titled “VoLTE and the IP/MPLS Cell Site Evolution”.
Small cell will enable mobile usage in dense urban environments but will need a backhaul solution to make it possible. Photo credit: Ed Yourdon / Foter / CC BY-SA
The Case for Small Cell Backhaul
As the search for frequency bands with suitable capacity for small-cell backhaul continues, frequency bands above 50GHz start to appear attractive because they offer both high-bandwidth availability and short range owing to their inherent propagation characteristics. The white paper available at the bottom of this blog examines spectrum in the 57-64GHz range to see whether it can be of use for small cell backhaul.
In many countries, the frequency range 57-66GHz is split into a number of discrete bands with differing requirements and conditions of use and/or licensing. These differences will be highlighted where applicable.
From a global point of view, the use of this spectrum by Fixed Services (FS) is being addressed by the ITU-R in its draft report on Fixed Service use trends in WP5C, which is currently under development and states:
57 GHz to 64 GHz
The radio-frequency channel and block arrangements of these bands for FS are defined in Recommendation ITU-R F.1497.
In 2011, around 700 links were in use in this band in a few administrations. The majority of the links are used for fixed and mobile infrastructure.
The air absorption around 60 GHz is over 10 dB/km. This condition restricts the hop length; on the other hand, the spectrum reuse efficiency is high. This feature makes the band suitable for small cell mobile backhaul.
Clearly, a global reported usage of 700 links would suggest a great deal of underutilization, although with unlicensed use in many countries it is difficult to know whether these figures are accurate or not. Regardless, there are reasons as to why this could be the case, while noting that the ITU-R believes this band has potential for small cell backhaul.
One factor is that this spectrum is not allocated solely to the Fixed Service. In fact, in many countries the Fixed Services have no access to this spectrum at all. A more detailed country-by-country breakdown follows. Please sign up below to receive the entire white paper.
Error: Contact form not found.
Ian Marshall
Regulatory Manager
Aviat Networks
[潛伏Latency] Charcoal, watercolor, fire on paper, 2011. Photo credit: RedPapaya (栩) / Foter / CC BY-NC-ND
Typically, low-latency microwave is used to “replace” traditional-fiber based networks linking financial centers. The business driver for microwave-instead-of-fiber in low latency is the time it takes to transmit trading instructions. With microwave, latency is reduced by a few milliseconds as compared to fiber. Nevertheless, those few milliseconds can translate into a trading edge over rival investors, which means big bucks. Low latency investors will pay a premium for this edge resulting in increased revenue for low-latency microwave network operators.
However, as with most financial functions, low latency is subject to a set of stringent regulations. The scenario is doubly difficult when low-latency microwave networks transmit across international boundaries. This compares to linking financial centers within a single country, which is relatively straightforward from a regulatory perspective because there is only one set of rules. The fact is when connecting financial centers in different nations and the operator’s network has to traverse other countries’ borders, the process becomes orders of magnitude more complex. Download the complete article for a fuller examination of some of these issues and why there should be widespread support for greater international harmonization of microwave regulation.
Ian Marshall
Regulatory Manager
Aviat Networks
Figure 1: Aviat Networks’ senior network engineer Ivan Zambrano shares his first microwave radio path plan on the occasion of his 28th anniversary with the company.
Recently, Aviat Networks was privileged to mark a milestone for one of its longest tenured and most distinguished employees, Ivan Zambrano. For 28 years, Ivan has dedicated his professional life to providing education and expert analysis to the microwave backhaul community, on the behalf of Aviat Networks and its corporate predecessors. As a senior engineer, Ivan teaches network transmission courses and other topics around the world on a regular basis.
However, Ivan got his start in the field. In fact, he still has the very first microwave radio path plan he ever created for a television station in Louisiana (Figure 1).
Together with the legendary Dick Laine (Figure 2), the two veteran microwave communications professionals have a combined 97 years of experience in the field. Unbelievably, Ivan actually has seniority over Dick (in the company at least). Dick has only been with us for a mere 26 years!
To help celebrate the occasion, Aviat Networks CEO, president and board member Michael Pangia took some time to personally congratulate Ivan (Figure 3). So here’s to you Ivan! We’re all looking forward to at least another 28 years!
If you’d be interested in having Ivan or Dick lend a hand (or bend an ear) on your microwave project, let us know by dropping a note below. Give us an idea about the type of training or consultation you need and any other pertinent details about the project.
Error: Contact form not found.
Photo credit: fingle / Foter / CC BY-NC-SA
In the mobile operator space in many countries, the national regulators are imposing so-called “buildout requirements” as a license condition on many wireless providers. In some countries, these requirements are restricted to licenses awarded by the auction process (e.g., cellular access spectrum) or block allocations while in others these conditions are attached to the majority of licenses.
Where buildout requirements are employed, a license typically has a clause that requires the licensee to build out a network/link or specified portion of a network within a certain period of time, with penalties imposed for failure to do so.
The rationale behind imposing these requirements is to ensure that after spectrum is assigned it is put to its intended use without delay. By doing this, or so the theory goes, bidders are discouraged from acquiring spectrum with the sole intent of blocking competitors’ activities without themselves offering service. Of course, the ultimate goal is the protection of spectrum—a finite and precious resource. There is no reason buildout requirements cannot be attached to any license grant, assuming that the detail of the requirements recognizes any constraints of the application for which the spectrum is sought.
Nevertheless, Aviat Networks is strongly against auctions and block allocations, but where these are a necessity then buildout requirements must be part of any award, with strong enforcement rules. The problem is that with strong enforcement operators and regulators can be at loggerheads and get tied up in court with lawsuits and countersuits for years. For example, in the U.S. you have the case of Fibertower. The FCC claims that Fibertower deliberately underbuilt its network and so moved to revoke its spectrum licenses. With the regulator moving against the operator, it came under insurmountable financial pressure and filed for bankruptcy. But even now, the operator’s creditors are fighting the FCC in order to recoup frequencies valued at more than US$100 million. So it is questionable whether this actually works in practice.
Microwave is the point
Focusing on point-to-point microwave, let’s examine the approach taken in two different countries. In the United States, for traditional link-by-link allocation, the FCC imposes an 18-month deadline by which time the link in question needs to be in service. However, in the United Kingdom, Ofcom imposes no such deadline. For certain applications, certain routes and sites are critical and can quickly become “full.” If these key locations are being filled by license applications that are not being translated into operational services, then this spectrum is effectively wasted as no one else can use it, nor is there any service being offered. Spectrum wasted in this manner reduces overall spectrum efficiency, and all spectrum authorities are motivated to ensure that spectrum is used in the most efficient way possible.
Of course having these rules is fine, but what happens when the rules are breached? In some cases, an operator will apply for an extension prior to the expiration of the original deadline; this may or may not be granted. However, the real test is what happens when the deadline passes. Ideally, what should happen is that the license(s) in question would be revoked and the associated spectrum made available for reallocation. Furthermore, if the spectrum in question was originally made available by block allocation or auction, then again, ideally, this spectrum should be returned to the pool of spectrum available for link-by-link licensing.
Additionally in shared bands, i.e., spectrum shared by the Fixed Service (FS) and the Fixed Satellite Service (FSS) should be governed by the same requirements in this instance. Therefore, unused/defunct FSS allocations/licenses should also be revoked with the spectrum being made available for reuse. In the case of FSS locations, this can have a significant effect owing to the geographic full-arc protection area that is usually associated with earth stations.
Counterpoint
The alternative viewpoint is that the current buildout requirements are counterproductive, in their aim to foster efficient use of spectrum. One reason cited for this view is that it takes time for an equipment supply ecosystem to develop, which will serve the spectrum users. However, when we examine this claim more carefully, it seems that this is often used where the spectrum has been awarded to a single user either by block allocation or by auction. We have written before about how auctions and block allocations are unsuitable for point-to-point microwave, and the claim above is a direct result of this process, which negatively impacts the number of operators. In turn, that reduces the ranks of equipment vendors, leading to thinner competition and, therefore, decreased incentive for innovation. This situation is made worse if the operator in question chooses a band plan that is nonstandard in terms of either existing U.S. or international arrangements.
Signal termination
In the final analysis, it does not serve any stakeholders’ goals to have valuable spectrum allocated but unutilized. Thus, having buildout requirements would appear to be a good idea. But along with that, an effective mechanism for reclaiming and making available to others spectrum that runs afoul of these rules is paramount to making the process work for the Greater Good. In Aviat’s view, buildout requirements are a valuable tool in ensuring spectrum efficiency and as such, their use should be seriously considered in all countries.
Ian Marshall
Regulatory Manager
Aviat Networks
Microwave backhaul is being reassessed as a strategy for small cell LTE traffic aggregation on business campuses. Photo credit: cbmd / Foter.com / CC BY-NC-ND
Small cells get all the press! As LTE rolls out in networks on every continent except Antarctica, small cells are grabbing headlines in technology trades and geek fan-boy blogs across the Internet. They’ll be needed sooner or later to provide LTE access in all those places around corners of buildings on business campuses, in urban parks surrounded by concrete canyons and other inaccessible locations. But little or only passing thought is paid to the ways in which small cell traffic will be aggregated back to the main network.
However, in a new FierceWireless ebook, microwave backhaul is pointed out as one of the critical strategies to provide throughput for all the small cell traffic to come. Microwave was here before small cell. And it’s such a good fit for small cell, if it had not already existed, we’d have to invent it now! Our director of product marketing, Stuart Little, tells FierceWireless that microwave meets the capacity needs of LTE backhaul. And Fierce adds modern microwave technology is changing the perceptions of its use for small cell backhaul.
Neither sleet nor rain nor changing K factors at night will stop microwave from small cell service. Specifically, Little tells Fierce that rain has little to no effect on microwave at the lower frequencies, and where it does have some effect in the higher bands, different technical techniques can help mitigate it. To find out more about small cell microwave backhaul, we recommend any of the Aviat blogs and related articles below. Or just read the FierceWireless ebook.