Aviat: The American Microwave Company and The Trusted Choice for State-Wide Microwave Networks
Aviat is the #1 provider of microwave and microwave routing systems to state/local government networks nationwide with 25 of 50 state-wide networks running Aviat equipment.
In microwave communications—as in all electronic communications mediums—operators trend toward the latest technologies (e.g., IP/MPLS). They all have conditioning to think that newer is better. And by and large that’s right.
However, when it comes to IP/MPLS—one of the most advanced packet technologies—you need to handle this concept with care. Especially in a mixed infrastructure that includes microwave, fiber and other potential backhaul transport.
As one of the most anticipated network technologies, Voice over LTE (VoLTE) has been discussed by operators for years. The expectation was that deployments would start in 2013, but roll-outs in North America were delayed.
Operators have faced a series of issues that include poor voice quality and long call establishment times. Once these problems are solved, it is expected that VoLTE will allow operators to provide voice and data services using an integrated packet network. As the problems described show, the implementation of VoLTE presents challenges for the entire LTE ecosystem including microwave backhaul.
We have produced a white paper to describe some of the VoLTE requirements that must be met in order to overcome these technical challenges, which must encompass a flexible microwave backhaul as a key factor for a successful transition to all-packet voice and video VoLTE networks. A brief introduction to VoLTE is presented and then different VoLTE backhaul requirements are described with possible solutions.
Click here to download a white paper on this subject titled “VoLTE and the IP/MPLS Cell Site Evolution”.
When people think of mobile security, they usually think of encryption for their smartphones, tablet computers such as the BlackBerry PlayBook or other wireless devices. Or they think of a remote “wipe” capability that can render any lost device blank of any data if some unauthorized party did in fact try to enter the device illegally. These wireless solutions are all state-of-the-art thinking in the mobile security community. And many wireless equipment OEMs and third-party mobile security providers offer them.
But they only protect the data on the devices. They only protect so-called “data at rest” once it’s been downloaded onto the iPhone or iPad. They don’t speak to the need to cover “data in motion” as it is transmitted over the air. Some parts of the over the air journey are protected by infrastructure in the form of Wi-Fi and GSM. One is notoriously subject to human failing to enable security and the other has been broken for sometime. And then there is wireless security for backhaul. In this area, there has not even been an industry standard or de facto standard established. And most microwave solutions providers don’t even offer options for wireless security on the backhaul.
Fortunately, this is not the case across the board. Strong Security on the Eclipse Packet Node microwave radio platform offers three-way protection for mobile backhaul security: secure management, payload encryption and integrated RADIUS capability. Read the embedded overview document in full-screen mode for more details:
The beauty of IEEE 1588v2 (i.e., Precision Time Protocol) synchronization is that it is a bookended solution. In theory, there is no need to worry about what is in between or underneath—from a Layer 1 transport perspective. While in principle this is accurate, there are a couple “unique” aspects of running 1588v2 over a microwave network that should be carefully considered in your deployment plans.
First, the infamous “last mile” is in reality typically many miles across multiple microwave radio hops—which may consist of a mix of linear, ring and hub-and-spoke configurations. Unfortunately, more hops introduce more packet transmission delay and delay variation over the backhaul—a potentially lethal mix for sync transport—the amount of which is proportional to the number of microwave hops. Careful design and engineering are required. On a bright note, Aviat Networks and Symmetricom recently validated <1.5ms delay could be achieved across 10 hops—well within the requirements for mobile backhaul.
Second, most advanced microwave systems now support Adaptive Coding and Modulation (ACM), a key benefit for microwave transport that allows the effective throughput of the microwave link to be dynamically changed to accommodate for radio path fading, typically due to changes in the weather. If bandwidth is reduced as a result of an ACM change, it is critical that advanced traffic and QoS management techniques be applied in the microwave systems to ensure that 1588v2 traffic (packets carrying timestamps) are given the highest/strict priority for transmission, and are not subject to delay or discard. On a brighter note, Aviat Networks and Symmetricom recently validated that 1588v2 could operate over a highly loaded (approaching 100 percent) microwave network running ACM.
In a nutshell, there are some unique considerations for running 1588v2 over microwave – but the outcome can be predictably bright with proper engineering.
Check out the Aviat Networks application note for more information on the Aviat Networks/Symmetricom partnership and 1588v2 network synchronization over microwave backhaul.
Errol Binda
Senior Solutions Marketing Manager, Aviat Networks
Based on microwave Total Cost of Ownership (TCO) model posted earlier, the most significant contributor to total cost is ongoing OPEX.
We see an increasing trend of operators making decisions on backhaul solution based mostly (sometimes solely) on price (or initial CAPEX). While initial CAPEX is important, if the goal is lowest cost, this can be problematic approach as initial CAPEX it is not the most significant contributor to total cost. Ongoing OPEX is key.
Perhaps a better approach would be to focus on features most impacting lowering total costs. For instance, adaptive coding and modulation can lower antenna sizes – which can reasonably reduce 10 year TCO by as much as $48,000 (which is 2-3x more than initial CAPEX). Deploying ring architectures with high layer (L2/L3 or packet-based) failure recovery techniques can enable lower per hop reliability and smaller antennas – further lowering costs.
Gary Croke
Product Marketing, Aviat Networks