State-Wide Public Safety Networks: Brief Update from Aviat

State-Wide Public Safety Networks: Brief Update from Aviat

Aviat: The American Microwave Company and The Trusted Choice for State-Wide Microwave Networks

Aviat is the #1 provider of microwave and microwave routing systems to state/local government networks nationwide with 25 of 50 state-wide networks running Aviat equipment.

Read More


State-Wide Microwave Network Case Study: Extra High Power Radios

State-Wide Microwave Network Case Study: Extra High Power Radios

This large western US state had a longtime relationship with a microwave radio vendor and would have continued buying from them if their radios and support evolved with the State’s needs. However, over time its needs changed and it had to have more capabilities from its communications network. But it did not want to unnecessarily build new sites and erect costly new towers.

Read More


Three Elements to IP/MPLS Success in the Microwave Access

Three Elements to IP/MPLS Success in the Microwave Access

In microwave communications—as in all electronic communications mediums—operators trend toward the latest technologies (e.g., IP/MPLS). They all have conditioning to think that newer is better. And by and large that’s right.

However, when it comes to IP/MPLS—one of the most advanced packet technologies—you need to handle this concept with care. Especially in a mixed infrastructure that includes microwave, fiber and other potential backhaul transport.

Read More


We Put the Spotlight on Voice Over LTE (VoLTE)

As one of the most anticipated network technologies, Voice over LTE (VoLTE) has been discussed by operators for years. The expectation was that deployments would start in 2013, but roll-outs in North America were delayed.

VoLTE Logo

Logo courtesy of YTD2525 Blog

Operators have faced a series of issues that include poor voice quality and long call establishment times. Once these problems are solved, it is expected that VoLTE will allow operators to provide  voice and data services using an integrated packet network. As the problems described show, the implementation of VoLTE presents challenges for the entire LTE ecosystem including microwave backhaul.

We have produced a white paper to describe some of the VoLTE requirements that must be met in order to overcome these technical challenges, which must encompass a flexible microwave backhaul as a key factor for a successful transition to all-packet voice and video VoLTE  networks. A brief introduction to VoLTE is presented and then different VoLTE backhaul requirements are described with possible solutions.

Click here to download a white paper on this subject titled “VoLTE and the IP/MPLS Cell Site Evolution”.

Read More


Hybrid Microwave for Wireless Network Backhaul Evolution

Microwave telecommunications tower, wireless network backhaul solution

Image via Wikipedia

There is no one-size-fits-all wireless network backhaul solution. What will work for some operators’ mobile backhaul will not work for others. Many operators have large installed bases of TDM infrastructure, and it is too cost-prohibitive to uninstall them wholesale and jump directly to a full IP mobile backhaul. There is going to be a transition period.

The transition period will need a different breed of wireless solutions. Fourth Generation Hybrid or Dual Ethernet/TDM microwave radio systems provide comprehensive transmission of both native TDM and native Ethernet/IP traffic for the smooth evolution of transmission networks. They will enable the introduction of next-generation IP-based services during this transition period.

We will explore this category of digital microwave technology for wireless backhaul, which is becoming ever more important as the 4G LTE wireless revolution gets underway with all due earnestness, even while the current 3G—and even 2G—networks continue to carry traffic for the foreseeable future.

Our current white paper builds on Aviat Networks‘ previous April 2010 white paper titled “What is Packet Microwave?” and provides market data from recent industry analyst reports that demonstrate the significant and continuing role of TDM in mobile backhaul networks and some of the prevailing concerns of operators in introducing Ethernet/IP backhaul services.

  • Solving the backhaul dilemma (fiercewireless.com)
  • Groundbreaking plunge into the super-fast future (smh.com.au)
  • Backhaul for the Mobile Broadband or Wireless Broadband Network (aviatnetworks.com)
  • Small Cell Mobile Backhaul: The LTE Capacity Shortfall (aviatnetworks.com)
  • iPass builds Wi-Fi exchange to expand operators’ data offload reach (connectedplanet.com)

 

If you’d like to talk to someone about the ideal wireless network backhaul solution for you, please click here.

Read More


Mobile Security Requires More Than Secure Wireless Devices

Person with PDA handheld device.

Image via Wikipedia

When people think of mobile security, they usually think of encryption for their smartphones, tablet computers such as the BlackBerry PlayBook or other wireless devices. Or they think of a remote “wipe” capability that can render any lost device blank of any data if some unauthorized party did in fact try to enter the device illegally. These wireless solutions are all state-of-the-art thinking in the mobile security community. And many wireless equipment OEMs and third-party mobile security providers offer them.

But they only protect the data on the devices. They only protect so-called “data at rest” once it’s been downloaded onto the iPhone or iPad. They don’t speak to the need to cover “data in motion” as it is transmitted over the air. Some parts of the over the air journey are protected by infrastructure in the form of Wi-Fi and GSM. One is notoriously subject to human failing to enable security and the other has been broken for sometime. And then there is wireless security for backhaul. In this area, there has not even been an industry standard or de facto standard established. And most microwave solutions providers don’t even offer options for wireless security on the backhaul.

Fortunately, this is not the case across the board. Strong Security on the Eclipse Packet Node microwave radio platform offers three-way protection for mobile backhaul security: secure management, payload encryption and integrated RADIUS capability. Read the embedded overview document in full-screen mode for more details:

Read More


Ethernet OAM Meets Demands on Microwave (Wireless) Networks

Ethernet OAM (Operations, Administration and Maintenance) can help mobile network operators and other transport providers meet the ever-growing demands for increased bandwidth across the backhaul network as well as meeting the equally important demand for quality and reliability of service.

This white paper will look at how Ethernet OAM can help the evolution from TDM to Next Generation Networks (NGN), with a focus on microwave-based NGN radio networks.

Read More


Synchronization Over Microwave Mobile Backhaul Networks


Synchronization is creating quite a stir in the mobile backhaul industry as operators are wrestling with a variety of synchronization technology options including Synchronous Ethernet (SyncE) and Precision Time Protocol (PTP) a.k.a. IEEE 1588v2. This paper reviews unique microwave backhaul characteristics that need to be taken into account in support of synchronization, and how each particular synch approach can be addressed.

Read More


White Paper-Deploying IEEE 1588v2 Synchronization over Packet Microwave Networks

Joint Application Note with Symmetricom and Aviat Networks.

Mobile Backhaul Networks are evolving to packet, driven by 4G evolution, requiring high data and video traffic and growing number of apps, users, smartphones and tablet devices. 1588v2 microwave are a perfect match for Mobile Backhaul evolution. Paper covers 1588v2 overview, unique considerations for microwave and typical deployment scenarios (multi-hop, ring).

Read More


What’s So Different About IEEE 1588v2 Sync Over Microwave Backhaul?

The beauty of IEEE 1588v2 (i.e., Precision Time Protocol) synchronization is that it is a bookended solution. In theory, there is no need to worry about what is in between or underneath—from a Layer 1 transport perspective. While in principle this is accurate, there are a couple “unique” aspects of running 1588v2 over a microwave network that should be carefully considered in your deployment plans.

First, the infamous “last mile” is in reality typically many miles across multiple microwave radio hops—which may consist of a mix of linear, ring and hub-and-spoke configurations. Unfortunately, more hops introduce more packet transmission delay and delay variation over the backhaul—a potentially lethal mix for sync transport—the amount of which is proportional to the number of microwave hops. Careful design and engineering are required. On a bright note, Aviat Networks and Symmetricom recently validated <1.5ms delay could be achieved across 10 hops—well within the requirements for mobile backhaul.

Second, most advanced microwave systems now support Adaptive Coding and Modulation (ACM), a key benefit for microwave transport that allows the effective throughput of the microwave link to be dynamically changed to accommodate for radio path fading, typically due to changes in the weather. If bandwidth is reduced as a result of an ACM change, it is critical that advanced traffic and QoS management techniques be applied in the microwave systems to ensure that 1588v2 traffic (packets carrying timestamps) are given the highest/strict priority for transmission, and are not subject to delay or discard. On a brighter note, Aviat Networks and Symmetricom recently validated that 1588v2 could operate over a highly loaded (approaching 100 percent) microwave network running ACM.

In a nutshell, there are some unique considerations for running 1588v2 over microwave – but the outcome can be predictably bright with proper engineering.

Check out the Aviat Networks application note for more information on the Aviat Networks/Symmetricom partnership and 1588v2 network synchronization over microwave backhaul.

Errol Binda

Senior Solutions Marketing Manager, Aviat Networks

Read More


Microwave Backhaul Total Cost of Ownership (TCO) pt. 2

How Important is Initial CAPEX?

Are we seeing the forest or the trees?

Based on microwave Total Cost of Ownership (TCO) model posted earlier, the most significant contributor to total cost is ongoing OPEX.

We see an increasing trend of operators making decisions on backhaul solution based mostly (sometimes solely) on price (or initial CAPEX). While initial CAPEX is important, if the goal is lowest cost, this can be problematic approach as initial CAPEX it is not the most significant contributor to total cost.  Ongoing OPEX is key.

Perhaps a better approach would be to focus on features most impacting lowering total costs.  For instance, adaptive coding and modulation can lower antenna sizes – which can reasonably reduce 10 year TCO by as much as $48,000 (which is 2-3x more than initial CAPEX).  Deploying ring architectures with high layer (L2/L3 or packet-based) failure recovery techniques can enable lower per hop reliability and smaller antennas – further lowering costs.

Microwave Backhaul Total Cost of Ownership (TCO) pt. 2

Microwave Backhaul Total Cost of Ownership

Gary Croke

Product Marketing, Aviat Networks

Read More


Subscribe to our newsletter