Federal, state, and municipal governments, public safety agencies, utilities, service providers, and other organizations require High Availability routing (HA) in their transport networks. Loss of network services can equate to a severe impact on an organization, from loss of productivity and efficiency to loss of revenue and – in the worst-case scenario – loss of life. High Availability Routing configurations ensure critical applications management with maximum uptime for the network.
High Availability routing is one aspect of a transport network’s system reliability engineering. High Availability routing is accomplished using two redundant routers (primary and secondary), with the goal of ensuring the continuity of traffic forwarding in the event of any hardware failure. High Availability Routing has three core principles: (1) eliminate single points of failure, (2) ensure fast and reliable crossover (or failover) from one router to the other in the event of a system failure, and (3) detect and repairs failures if and when they occur.
Traditionally, HA router configurations required two separate routers, each of which has to be managed separately. This leads to unnecessary complexity due to the duplication of the router configuration management and monitoring efforts.
Aviat’s CTR 8740 solution consists of two stacked and interconnected units that protect the network’s Data and Control planes against a single point of hardware failure. Once the two routers are connected and HA mode is enabled, the two units are synchronized via an encrypted channel, enabling them to operate as a single router instance with dual control and data planes.
The two routers logically appear on the network as one network element, with one IP address. This facilitates failover from one router to the other, and accelerates peering with the rest of the network at startup and after a network failure.
New software is loaded to the two routers via a single interface then activated in an orderly process. A Graceful Restart mechanism enables the routers to maintain traffic flow and prevent service outages.
The routers are also managed as a single entity by Aviat’s ProVision Plus web-based network management system (NMS), enabling customers to manage all Aviat networks through one screen for faster fault analysis and identification.
Each CTR 8740 also features a redundant power supply feed and redundant power supply card option, so if one power supply fails (external or internal), the other power supply keeps the router running. This eliminates a single point of power failure within each router for added resilience.
CTR 8740 High Availability feature delivers several key benefits to network operators:
The point of this post is to determine the amount of latency reduction possible with a one-box integrated microwave router solution when compared to a two-box (separate router + microwave) offering. By how much does the one box solution improve latency?
Latency is important to all network operators. The lower the end-to-end delay the better it is for all types of applications.
For example, latency is critically important to mobile network operators (MNOs) for LTE Advanced features like coordinated multi-point (COMP) and MIMO, which require extremely tight latency. CRAN architectures are also demanding tighter latency from the backhaul.
In addition, latency-sensitive applications like Teleprotection, SCADA, and simulcast in private markets such as public safety, utilities, and the federal government will greatly benefit from low latency network performance. For other customers, low latency is critical for synchronization and HD video transport.
At a time in the not-so-distant past, there was only one way to implement microwave radio: one radio link per microwave terminal. Did not matter what type of link it concerned: protected, non-protected or multi-channel. From the advent of digital microwave radio in the 1980s and 1990s, terminals typically had no options for integration of co-located telecom devices. And to interconnect muxes or switches required external cabling and possibly a patch-panel.
Then in the early 2000s, so-called “nodal” radios came into vogue. Designed to address the drawbacks of the one-radio-one-link paradigm, a single microwave radio node could serve as a platform for multiple links. There were still limitations when it came to radio and switch interactions, but multiple sources of traffic could now be integrated and connected on the nodal platform.