Aviat Networks is the leading pure play microwave, software and services provider, with unrivaled microwave expertise. Learn more about our end-to-end transport solution portfolio in our corporate presentation.
Nigeria, in the heart of West Africa, is home to leading mobile operator MTN Nigeria and the hottest wireless carrier market on earth.
Customers are looking for partners who can do more than just provide them with “boxes.” To really partner with customers, sometimes you have to step outside of the box. Providing a comprehensive, advanced Spares Management Program solution to MTN Nigeria—Aviat Networks’ largest customer and a major Tier 1 mobile network operator in Africa—is a prime example of what can be accomplished when stepping outside of the box.
Challenging Environment
As many are aware, Africa represents a challenging operating environment where on a daily basis mobile operators have to contend with power outages, lack of infrastructure and a shortage of trained personnel. Due to these issues, MTN Nigeria was experiencing significant challenges with its spares management related to its overall installed base of network equipment. This included having more spares than were needed but never having the right spare in the right place at the right time.
Even though the customer had a large supply of spares as part of capital expenditures, it was actually very difficult to keep track of the physical inventory. In this situation, MTN Nigeria asked its suppliers to manage the problem. Each supplier was to take accountability for owning and managing the problem for the customer.
This image of microwave energy in a "total sky" picture of the known universe shows it's everywhere in primordial space, more than 13 billion years ago.
Microwaves are as old as the beginning of the universe. Well, they’ve been around for at least 13.7 billion years—very close to the total time since the Big Bang, some 14 billion years ago. However, we don’t want to go that far back in covering the history of microwave communications.
Having just observed the 155th anniversary of the birth of Nikola Tesla, arguably the most important inventor involved in radio and wireless communications, this is a good time to take a broader view of the wireless industry. If you have been in the wireless transmission field for some time, you are probably familiar with Dick Laine, Aviat Networks‘ principal engineer. He has taught a wireless transmission course for many years—for Aviat Networks and its predecessor companies.
The embedded presentation below comes from one of those courses. In a technological field filled with such well-educated scientists and engineers from some of the finest universities and colleges, it’s hard to believe that microwave solutions and radio itself started in so much controversy by men who were in many cases self-taught. Dick’s presentation goes over all of this in a bit more detail. Hopefully, it’s enough to whet your appetite to find out more. If you like the presentation, consider hearing it live or another lecture series on wireless transmission engineering at one of our open enrollment training courses.
There is no one-size-fits-all wireless network backhaul solution. What will work for some operators’ mobile backhaul will not work for others. Many operators have large installed bases of TDM infrastructure, and it is too cost-prohibitive to uninstall them wholesale and jump directly to a full IP mobile backhaul. There is going to be a transition period.
The transition period will need a different breed of wireless solutions. Fourth Generation Hybrid or Dual Ethernet/TDM microwave radio systems provide comprehensive transmission of both native TDM and native Ethernet/IP traffic for the smooth evolution of transmission networks. They will enable the introduction of next-generation IP-based services during this transition period.
We will explore this category of digital microwave technology for wireless backhaul, which is becoming ever more important as the 4G LTE wireless revolution gets underway with all due earnestness, even while the current 3G—and even 2G—networks continue to carry traffic for the foreseeable future.
Our current white paper builds on Aviat Networks‘ previous April 2010 white paper titled “What is Packet Microwave?” and provides market data from recent industry analyst reports that demonstrate the significant and continuing role of TDM in mobile backhaul networks and some of the prevailing concerns of operators in introducing Ethernet/IP backhaul services.
Smartphones such as the HTC Mogul are driving the demand for more wireless spectrum to be released.
To help relieve wireless network congestion, the Obama Administration made a commitment to release up to 500 MHz of spectrum for reuse in commercial wireless solutions. In April 2011, the NTIA updated the progress toward this commitment in its first interim report. This 500 MHz of spectrum—comprising 280 MHz of underused commercial spectrum and 220 MHz of federally owned radio spectrum now administered by the NTIA—would help ease the growing shortage of spectrum as demands on the wireless network rise. This demand is primarily fueled by the explosive adoption rate of smartphones and other mobile broadband devices and the corresponding infrastructure—both access and mobile backhaul—required to support their use.
The timescales and conditions for the availability of this spectrum is in the hands of the FCC and is expected to take about five years as the first part of its 10 year plan. However, the first four blocks of spectrum have recently been identified for release by the NTIA at 1675-1710 MHz, 1755-1780 MHz, 3500-3650 MHz, 4200-4220 MHz and 4380-4400 MHz.
It is estimated that an auction of 500 MHz of spectrum could raise more than $20 billion for the U.S Treasury.
Many wireless technology industry commentators expect the lower bands to be taken up for wireless access. But the higher three bands could be allocated for mobile backhaul use to begin the process of easing congestion in the current 6GHz bands.
The microwave backhaul industry welcomes this first step. We look forward to follow through on further spectrum releases—especially in the 4 to 8GHz range—which is suitable for high-capacity trunking backhaul.
As 2G and 3G networks enter the upgrade path to 4G wireless, it will require that more than the base stations receive new wireless solutions. The path to LTE wireless—odds-on favorite to be the dominant 4G technology—is paved with increasing data demand from smartphones, iPads, other tablet PCs, electronic readers and probably some other intelligent mobile computing devices yet to be imagined.
All these devices will place throughput demands on the base stations, which in turn will place greater demands on the mobile backhaul network. Even as 4G devices place demands on mobile backhaul, the 2G and 3G technologies will be in place for sometime, coexisting in the same networks with 4G. In these situations, IP/Ethernet will be the next-generation networks‘ transport technology of choice.
The Aviat Networks Headquarters in Santa Clara is perfectly positioned to serve its wireless customers. Watch this video to see the full capabilities of the Aviat Networks North American offices.
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.