Your Network Deserves Better than a Regular Router

Aviat-Networks-says-Regular-Routers-bad-for-Microwave-Networks-but-there-is-good-news-in-microwave-routers-January-29-2015

Regular routers are bad news for microwave networks. But there is also good news in the form of microwave routers. Photo credit: Mike Licht, NotionsCapital.com / Foter / CC BY

Mobile network operators (MNOs) continue to reap the windfall of the widespread adoption of smartphones. Mobile data volumes spiked initially and still rise quarter over quarter. Along with the demand for more data throughput from their subscribers, MNOs have to accommodate the greater need for responsiveness closer to the network edge.

While regular routers are good at serving Layer 3 services to mobile users on fiber-heavy backhaul networks, they do not do a very efficient job of servicing mobile backhaul networks that primarily use microwave radio. As it turns out, the worldwide majority of mobile backhaul networks are still based on microwave technology, as regularly updated industry research shows.

What can an MNO with microwave backhaul do to bring Layer 3 functionality to its customers that will handle bandwidth constraints, unique aspects of translating router protocols across the microwave interface and failure detection and recovery, among others?

Aviat Networks has published an article in Mobile World magazine that looks at these challenges of regular routers when used in a microwave backhaul network and proposes possible solutions.

Converged Microwave Traffic Emerges in Africa

Aviat-Networks-Technical-Marketing-Manager-Siphiwe-Nelwamondo-discusses-Microwave-and-IP-Convergence-with-Engineering-News-January-23-2015

Convergence: Photo credit: rkimpeljr / Foter / CC BY-SA

In South Africa, as in many emerging markets, wireless backhaul has long been a proverbial bottleneck to network growth. Due to cost and logistics, fiber optic technology remains out of reach as a practical solution for most aggregation scenarios, save for urban applications where population density and shorter routes can justify the exorbitance.

Now with the advent of higher speed, higher throughput mobile phones and tablet PCs, higher-order networking technologies are being pressed into service. Standard microwave radio, while cost efficient and effective for crossing far-flung forests, monumental mountains and desiccated deserts with traditional payload such as voice calls and moderate data rate applications, was not designed for the connectivity and capacity requirements of Layer 3 services. Thus, the bottleneck has grown still narrower. Even to the point where standard microwave radio might be hitting its upper threshold for serving mobile broadband.

Technical marketing manager, Siphiwe Nelwamondo, recently sat down with Engineering News, to discuss these issues and the present and future of microwave radio backhaul in South Africa and across the continent. In addition, he delved into how microwave networking is bridging the radio-IP gap for Layer 3 services by running IP/MPLS protocols on converged microwave routers.

As more and more mobile services get pushed out to the edge of the access network, the imperative for Layer 3 will only grow. Even as 3.5G and 4G mobile users who depend on full-IP increase in number, a majority of second- and third-generation subscribers will continue to rely on circuit-based technology. Not to worry, Nelwamondo covers how TDM telephony will be supported in a converged microwave and IP environment.

The full article goes on to discuss how mobile operators will strategize providing enterprise services from the cellular base station with microwave networking, virtual routers and more.