How is Buying a Wireless Network like Buying a Boat?

Downeast style charter boat Wreck Valley

Buying a network is like buying a boat in that you do not really know what you need/want until after you have bought it. (Photo credit: Wreckvalle via Wikipedia)

Think about this phrase carefully: “Buy your second boat first.” Lately, I have been thinking of that phrase, which I once read in a boating magazine, and how it parallels some of the thinking processes wireless operators go through when making their technology and product decisions.

Often, when it comes to boating, you do not know what kind of “boat” you want or that you are even in the market. You show up to the boat show and are overwhelmed by the number of models, features, prices, etc.

To make a long story short, you end up picking something that is shiny/new, fits your near-term budget and matches how you envision the experience. What you did not know is how the “boat” rides in the water, how well it will perform with your children trailing in the water in an inner tube, how it is at storing all your swag, how roomy it really is once you add your friend’s family and the dog, etc. It is only after you get to know these things and “boating” in general that you start to realize what it is that you really want.

But now, you are stuck for at least a few years since—as you can imagine—you cannot easily trade in a “boat” that you have owned for just a short period of time. You need to stick it out until it makes sense financially, all the while watching “boats” you really want zipping around on the lake. If only you could go back in time and buy your second boat first. This experience draws parallels to wireless network buying decisions for a few reasons:

  1. Depreciation of wireless networking assets—much like a boat, the network does not pay for itself for a number of years down the road. Memories and the fun on the boat is really the only way to assign the boat a monetary value, but a wireless network is similar in that its usage is paying down on the investment
  2. What’s shiny/new is not always what you actually need—don’t be emotional. You need to understand what it is you really want to build toward. Stop thinking about how you can get by on the cheap to satisfy a relatively short-term, emotional goal
  3. Experience/expertise—whether buying a boat or buying a wireless network, find someone you can trust, someone who has done it before and has the experience to work with you on the complete package, the solution and total cost of ownership. Test-drive your friend’s boat for a day or take him to the boat show

Suffice to say you really cannot predict the future, but you should know where you want to go and where you want to be. Knowing you should be thinking about how to build the right network first just makes sense.

Steven Loebrich
Director, Partner and Solutions Marketing
Aviat Networks

Read More

Protection and Diversity: 100 Percent Uptime the Goal

English: BT Thornhill microwave radio tower

The BT Thornhill microwave radio tower above demonstrates a Space Diversity protection scheme with its parabolic antennas placed apart from one another (Photo credit: Peter Facey via Wikipedia)

Traffic disconnect is unacceptable for most microwave systems, especially for homeland security and utilities. But Aviat Networks Principal Engineer Dick Laine says that it is economically unviable to have a microwave radio system that provides absolutely 100 percent uptime to accommodate every possible traffic downtime scenario. He adds that towers, waveguides and all other hardware and infrastructure would have to be completely bulletproof. This is true of every telecommunication system.

However, with protection schemes and diversity arrangements in today’s wireless communication solutions, microwave transmission can get very close to mitigating against long-term traffic outages (i.e., > 10 CSES, consecutive severely errored seconds) and short-term traffic outages (i.e., < 10 CSES).

In pursuit of the 100 percent uptime goal, Dick goes over many of the strategies available in the newest video in the Radio Head Technology Series, for which there is complimentary registration. For example, there are many approaches to protection, including Hot Standby and Space Diversity. In particular, Dick points out Frequency Diversity has advantages over many protection schemes, but few outside the federal government are able to obtain the necessary waivers in order to use it. Hybrid Diversity uses both Space Diversity and Frequency Diversity to create a very strong protection solution. A case study outlining Hybrid Diversity is available.

Other concepts Dick covers in this fifth edition of Radio Heads includes error performance objectives, bit error rate, data throughput, errorless switching, equipment degradation, antenna misalignment, self-healing ring architecture and something called the “Chicken Little” alarm.

Read More

42GHz: A New Global Standard for Wireless Backhaul?

Parabolic antennas

With ever-increasing demand for spectrum in fixed services, FWCC has endorsed opening up the 42GHz band as a new global standard for microwave backhaul. (Photo credit: Miguel Ferrando via Wikipedia)

An ever-increasing demand for spectrum has recently turned focus on the 42GHz band. Initially opened in some European countries following the development of ECC REC(01)04, the recently published ECC Report 173 states 12 countries have opened this band including Germany, Norway, Poland, Switzerland and the United Kingdom. In the U.K., this band was part of a wider auction of fixed service bands in 2010, with three operators being granted blocks of spectrum in the 42GHz band as a result.

Building on this growth there is a move to make this band global and earlier this year saw the publication of ITU-R Rec F.2005, which in effect promoted the aforementioned CEPT recommendation to global status. Aviat Networks has been lobbying key regulators to open this band. We are eagerly awaiting a consultation from Canada and responses have already been submitted to recent consultations from France and Ireland containing considerations regarding opening this band. The process is also underway in Finland and Sweden to open up this band. Recently our attention has turned to the United States and whether the FCC will open this band for use by the fixed service.

Back in autumn 2011, Aviat Networks raised this topic within the FWCC (Fixed Wireless Communications Coalition) as the first stage of a petition of rulemaking to the FCC. At first there was only a lukewarm reception to our idea as there was concern that the FCC would refuse the request out-of-hand as some previously released spectrum below 40 GHz is underutilized and, therefore, why is more needed? We pointed out that much of this spectrum (e.g., 39 GHz) was block-allocated by auction and thus has not been readily available to all users and that the licensees have underutilized the spectrum. There is a growing need for spectrum that can be licensed on a flexible, site-by-site basis, and this is reflected by the fact that there are no underutilization issues in bands such as 18 and 23 GHz, which are licensed in this manner. It is no coincidence that auctioned bands tend to underperform in terms of efficiency and utilization. So, undeterred, we forged ahead and this resulted in the production of a FWCC petition to the FCC in May 2012. The FCC has recently placed this petition on public notice, per its procedures. This is a great success for Aviat Networks and our commitment to seeking more spectrum for the fixed service, but the story has not ended here as can be seen from a recent blog entry from the FWCC.

Aviat Networks will continue work with the FWCC to ensure that the FCC gives this proposal full consideration and, having learned important lessons from past spectrum allocations, we will lobby for a flexible approach to the licensing model.

Ian Marshall
Regulatory Manager
Aviat Networks

Read More

Five-Nines Availability and RCA’s Top Secret Communication Project

Stylus for jukebox using shellac 78 rpm record...

You may not think that 78 rpm records and microwave communications could have anything in common. But our Dick Laine finds the devil in the details between the two in Radio Heads video No. 3. (Picture: label for 1940s brand of jukebox needles for playing 78 rpm records; photo credit, Infrogmation via Wikipedia)

Five-nines (99.999 percent) availability is a concept that is familiar in wireless engineering. Dick Laine, principal engineer of Aviat Networks, compares five-nines availability to 78-rpm records in our most recent episode of the Radio Head Technology Series.

As he relates, even with scratches and pops, a 78-rpm record still is able to transfer aural information so that you can hear it, i.e., its availability is intact, as it does not drop performance. Scratches and pops only represent degradation in the quality of communication. But when the record is broken, an outage occurs—no record, no communication.

The same goes for wireless communication systems. If a microwave link drops 315 or fewer seconds of microwave communications per year (in increments of up to 10 seconds at a time), it is maintaining five-nines availability. The microwave link is offering 99.999 percent availability for wireless backhaul. Only if the microwave link is unavailable for more than 10 seconds has an outage occurred, for the purposes of determining if microwave communications traffic has been dropped.

Dick goes on to explain about what happened in 1949 when 78-rpm records were superseded by 45-rpm records. Dick got a sneak peek at the top-secret 45-rpm record project when he visited the legendary RCA facility in Camden, New Jersey, which played a crucial role in the development of the modern music, radio and television businesses. Unfortunately, unlike a five-nines microwave link, 78-rpm and 45-rpm records are mostly unavailable nowadays.

Read More

3 Models for Microwave Link Error Performance? Laine Explains

Dick Laine explains ITU-R models

In the second episode of Aviat Networks’ Radio Head Technology Series, Principal Engineer Dick Laine explains ITU-R models for Fixed Wireless Systems.

As most radio engineers know, Vigants calculations, which are discussed in a broadly cited Bell System Technical Journal article, are widely used to determine reliability or error performance for microwave link design. In Video 2 of Aviat Networks’ popular Radio Head Technology Series, which is now available for viewing, Principal Engineer Dick Laine explains how he uses Vigants calculations in conjunction with the three completely separate ITU-R Fixed Wireless System (FWS) models for TDM.

Because of all these models, he likes to use Vigants calculations as a “sanity check” to see that he is close to the correct result for his path engineering plans. The free Aviat Networks’ Starlink wireless path engineering tool can be used to handle Vigants calculations for Aviat Networks’ and other vendors’ equipment.

Can’t wait to hear more of Dick’s experienced views on microwave radio transmission engineering? You can get ahead of the learning curve by registering for the series and get these videos sent to your inbox as soon as they are released.

Read More

Cloud Computing is Demanding Bandwidth

All I can say is watch out Mr. Mobile Operator. Google just launched their new Google Drive, a cloud-based product that replaces Google Docs. Drive adds the capability to essentially push all of your documents from various locations to the cloud for collaboration and synchronization to any device. This puts Google’s cloud-based capability on par with Apple’s iCloud service launched last year.

With the massive number of smartphones on the market and somewhere north of 45% being Android-based, this adds even more cloud-enabled devices to the mobile network. We’re talking about photos, videos, documents, etc… any type of file can be uploaded to your Drive on Android-based phones.

Add this to expanded/simplified Dropbox services, Microsoft’s SkyDrive that now provides 7GB of free storage and the many cloud storage products, and you’ve got a ton of data flowing across the mobile network in both directions (e.g. uplink and downlink).

Services like this will continue to fuel the subscriber appetite for more and more feature rich services at the same time fueling demand for ever increasing amounts of raw bandwidth all the way to the edge of the network. Those 8 megapixel photos or 1080P videos most newer smartphones take use a lot of space and therefore lots of bandwidth.

Steven Loebrich
Director, Partner and Solutions Marketing
Aviat Networks

Read More

Managed Services for Emerging Markets – Dubai 2012

This time last week, we were participating in the Managed Services for Growth Markets conference in Dubai. The conference consisted of two days of presentation and panels discussing the latest trends in Managed Services for emerging markets. We heard how several customer organizations have leveraged Managed Services to improve performance, costs, and, ultimately, their bottom line.

This is similar to what we are seeing and hearing across our own customer base. There is a growing demand for wireless network services suppliers to take on more of the support and maintenance of networks. By outsourcing operational activities, our wireless customers can focus on perfecting the services they offer to their customers.

Our own Ross Gillett, Director of Services for the Middle East and Africa, participated on a discussion panel focused on how suppliers, such as Aviat Networks, bring value to their customers through Managed Services. Ross emphasized that specific knowledge of the local customer requirements is key in developing a successful solution. Whether it is a mobile service provider, low latency customer or a state agency—they are all basically looking for someone who can bring value to their investment.

The bottom line is that good partners focus on making their customer successful!

Emerging markets are an important area of focus for us and this particular event had strong support from a number of our existing customers as well as several potential new customers from these markets. We heard a number of presentations outlining some of the unique challenges customers and Managed Service providers have to address in this region. We also had a chance to speak with conference participants and share our experiences with managing multiple customer networks.

In our exhibition hall reception area, we had numerous opportunities to interact with suppliers, media and even competitors to share stories, challenges and where we see the market headed. These one-to-one conversations are the best part of a conference since it gives us an opportunity to share, on a personal level, how Managed Services are being leveraged on a broad basis.

We will definitely be returning next year.

Pat Davis
Director, Global Support Services

Read More

Dick Laine’s 4 Keys to Successful Transmission Engineering of Microwave Links

Dick Laine, Principal Engineer, Aviat Networks

Dick Laine, Principal Engineer, Aviat Networks

Transmission engineering of a microwave link requires creativity and skill. So if you are looking for inspiration as well as high-quality wireless engineering instruction look no further than the “Radio Head Technology Series.” Radio Heads is a collection of videos and podcasts featuring our very own Dick Laine. Dick is arguably the most experienced microwave engineer in the wireless communication business, having spent more than 50 years working with microwave radio from its inception—here at Aviat Networks and our predecessor companies (e.g., Farinon, Harris MCD).

Dick has been involved with nearly every aspect of RF transmission, microwave link and network transmission design, and the effects of geoclimatic conditions on transmission of voice and now IP radio data packets.

In his own unique style, Dick has been teaching basic and advanced concepts for digital microwave transmission in seminars and training classes worldwide. Students who have taken his classes return years later eager to get a refresher from Dick and to hear about some of his great adventures in Asia, the Middle East, Africa and in the Americas.

In the first Radio Heads video titled “Check List for a Successful Microwave Link,” Dick explains the four key objectives or requirements for a well-done microwave link design along with “check list” items that the project manager or transmission engineer evaluates for proper design and deployment of a digital microwave link. If you have not already signed up for this video series, register to view the content.

If you find this video of value, please pass along the information to your friends and colleagues via Facebook, Twitter, LinkedIn or your other favorite social media network.

Read More

Coverage Maps for New Wireless Spectrum Available to Fixed Services

United States radio spectrum frequency allocat...

United States radio spectrum frequency allocations chart. The FCC has freed 650 MHz of spectrum to increase sharing possibilities for 7GHz and 13GHz bands. (Photo credit: United States Department of Commerce employee via Wikipedia)

As we blogged last summer, the FCC has released 650 MHz of new wireless technology spectrum for Fixed Service wireless communication technology operators. Now Comsearch, a leading provider of spectrum management and wireless engineering services in the US, has highlighted this issue in its latest online newsletter, with an article that includes some very informative coverage maps showing the zones where the new bandwidth is available.

These maps are excellent at conveying the limitations of the newly released spectrum for microwave link applications in the 7 GHz (6.875–7.125) and 13 GHz (12.7–13.1) bands. After taking into account the zones that are reserved for existing Fixed and Mobile Broadcast Auxiliary Service (BAS) and the Cable TV Relay Service (CARS) users, these new bands are only available in about 50 percent of the US land mass covering only 10 percent of the population.

What do you think? Should the FCC loosen the spectrum sharing rules even more for 7GHz and 13GHz bands? Take our poll and tell us:

Read More

Wireless Network Services: Disaster Monitoring and Recovery

Category F5 tornado (upgraded from initial est...

Category F5 tornado (upgraded from initial estimate of F4) viewed from the southeast as it approached Elie, Manitoba, on Friday, June 22, 2007. (Photo credit: Justin1569 at Wikipedia)

In 2011, the United States experienced its worst tornado outbreak in more than 50 years. And communication systems were not spared from the carnage.

In the video below, Robert Young, senior manager for Aviat Networks’ Americas TAC/NOC explains how the company’s San Antonio network operations center (NOC) and its expertise in disaster monitoring and recovery helped microwave communication systems rebound from severe weather challenges. He details how the Aviat Networks Technical Assistance Center (TAC) and NOC team provided support for customers during the 2011 tornado outbreak.

One of the special services Aviat Networks’ NOC offers is in the form of Special Event Recovery and Monitoring. Two of Aviat Networks’ major customers were directly affected by the 2011 tornado outbreak. The storms were tracked, and the customers were preemptively notified of the storm tracks. Approximately 600-plus tornadoes were monitored in one week, and Aviat Networks managed disaster recovery of more than 300 outages due to the storms.

Read More

Subscribe to our newsletter