4G Upgrade Path Drives Backhaul Migration in Kenya

Safaricom's Internet Broadband Dongle (with SI...

Burgeoning WiMAX and 3G data traffic from subscriber devices such as Safaricom’s Internet Broadband Dongle (with SIM Card) are driving the mobile operator to migrate from TDM to hybrid microwave backhaul. (Photo credit: whiteafrican via Flickr)

Migrating legacy mobile backhaul networks that were designed for TDM traffic to add support for high-speed Ethernet data for 3G and 4G mobile technologies is one of the biggest challenges for operators worldwide. Each case is unique and poses its own quirks and potential pitfalls. Mobile operators must juggle new technologies, cost pressures and the need to maintain existing services or risk driving customers to the competition.

For Safaricom, the leading mobile operator in Kenya and one of largest in all Africa, the case involved preserving its E1 capacity for voice calls and simultaneously adding Ethernet/IP bandwidth for burgeoning 3G and WiMAX data traffic. As many mobile operators have done in the past, Safaricom built its network over time. Many parts of the network are still legacy 2G TDM technology. However, things are changing rapidly, with 3G subscriber numbers up 85 percent in 2011 year over year.

Many of these subscribers are consuming ever-increasing amounts of data bandwidth. Safaricom’s TDM based backhaul, making use of Ethernet-to-E1 converters, is finding it hard to keep up with demand. To help resolve the situation, the operator called on Aviat Networks, one of its incumbent solution providers. Using its market leading hybrid radio solution, the modular Eclipse microwave networking platform, Aviat Networks enabled Safaricom to add IP data capacity as necessary while keeping E1 capacity for voice calls.

In addition, the stage has been set for Safaricom to make the eventual migration to all-IP backhaul. With the modular Eclipse platform, it can transition on its own schedule. For more information, read the complete Safaricom case study in the frame below or download the PDF:

Read More


Mobile Network Modernization in Africa

Africa Mobile Penetration Rates

Total African Mobile Connections and Penetration Rate (million, percentage penetration). Source GSMA Africa Mobile Observatory 2011

Throughout Africa a wind of change is blowing as mobile network operators ponder, and in many cases implement, a wave of network modernization. The trigger for this is multi-faceted. Booming subscriber growth, introduction of new data services and arrival of new undersea fiber optic cable links are combining to strain existing network infrastructure to the breaking point.

Booming Mobile Subscriber Growth
According to the GSMA , as of September 2011 Africa has overtaken Latin America with 620m mobile connections, making it the second largest mobile market in the world after Asia-Pacific. The number of connections has more than doubled over the past four years, with growth expected to continue at the fastest rate of all global regions over the next four years.

First Voice, Now Increasingly Data
Most networks across Africa were built many years ago to serve the initial rollout of 2G/GSM mobile networks that were designed to provide basic voice services. Many operators have since introduced data services using EDGE, 3G WCDMA, and, more recently 3G HSPA, putting an incredible strain on these networks. These data services can be vital for the operator, as they are often supporting premium, prepaid subscribers or new fixed line data services being offered for small and medium-size businesses.

One example of network modernization in action is in East Africa, where a mobile network operator saw subscriber numbers increase 9 percent in 2011, with 3G customers increasing more than 85 percent. This operator was also offering fixed data services to private and corporate customers through the deployment of WiMAX base stations collocated with the existing mobile sites. All this new data traffic was growing exponentially and fast outstripping the legacy backhaul network capacity. The operator also had to ensure that existing voice traffic was protected.

Priorities Driving Network Upgrades
Today, several priorities are driving network operators to upgrade their networks including the need for:

  • Increased capacity
  • More efficient use of backhaul spectrum resources
  • Support for increasing volume of Ethernet/IP-based traffic
  • Network Simplification
  • Reduction in Capital and Operational Expenses

These five priorities are closely interrelated. For more details, download the complete article.

Stuart D. Little
Director Corporate Marketing
Aviat Networks

Read More


Smart Grid Wireless Technology Comparison Chart

Cropped version:A worker climbing down an elec...

Image via Wikipedia

Smart Grid is an enabling opportunity for operators to help address energy generation and consumption in an intelligent and efficient manner.

The explanation of Smart Grid solutions in this comparison chart should help to clarify the various choices for wireless connectivity—from access to backhaul, for data or management transmission—using any one or a combination of various technologies.

It compares various wireless technologies for wireless applications related to Smart Grid communications. It also covers general information such as “How to use in Smart Grid,” key advantages and notable weaknesses.

Key technical parameters such as bandwidth, coverage, user data rates and cost are also considered. Microwave, WiMAX, Mesh, LTE, 3G cellular, Power Line Carrier, WLAN and Zigbee are described.

If you like this chart and want to receive a complimentary hard copy version, leave a comment with your name and mailing address (your comment won’t be published). There is an extremely limited number of stock on hand, and we will fulfill as many requests as possible.

Read More


What is 4G?

By now, you have seen the blogs, read the tweets and perhaps watched a YouTube video about “4G” mobile networks. In these postings, various claims and counterclaims have been made for what really defines 4G wireless. Further down in the industry dialogue, debate has been swirling among the ITU, IEEE 802 and various telecom analysts and pundits about what constitutes 4G. The technical acronyms LTE, WiMAX, HSPA+ and perhaps others have floated through the ether, creating more confusion than clarity.

All this happened when ITU let the genie out of the bottle in late 2010 and loosened the technical definition of what is truly 4G. The answer had been mobile technology capable of 100 Mbps+ downloads. However, ITU seems to have given mobile operators and others with vested interests enough leeway to define 4G as any mobile broadband technology that is faster than “3G,” which enjoyed a similar hype and uncertainty when it debuted in the early 2000s. And so began the public’s conditioning to equate more Gs with faster throughput.

Of course, all these Gs only refer to the generation of mobile technology, currently in its third generation in most places, with some limited availability of fourth generation technology. For the record, 4G technology in ITU’s strictest sense only refers to Long Term Evolution (LTE) Advanced and WiMAX 802.16m. Even current LTE and WiMAX 16e installations do not qualify. They are evolutionary steps on the road to 4G. And though HSPA+ is a fast download technology, it is still a third generation mobile telecom technology. Still, some HSPA+ carriers are achieving 21 Mbps downloads—faster than the 12 Mbps of early LTE carriers. With a software upgrade by the end of 2011, HSPA+ carriers can conceivably get up to 42 Mbps—but that is the theoretical maximum. Someday, LTE operators could hypothetically top out at 300 Mbps, but that day is not in the immediate future.

What is immediately apparent and most important is what 4G means to the end user. Most people cannot be bothered to dive into the technical details of mobile broadband technology, even if they are capable of grasping its intricacies. What they can grasp is faster mobile video loads with a minimum of latency and lack of jitter. What they can get is the mobile Internet displaying web pages with images in place and not red Xs or empty pictureholders. What is important is delivering content to the end user—wherever she is—faster than she expects, however many Gs it takes….

Read More


Subscribe to our newsletter