All-Outdoor Microwave Radios: Site Considerations

One of the great things about the microwave radio market today is the diversity of products available to network operators. But like many situations where there is a glut of options, it tends to put more stress on making the right choice.

An operator looking at products in the microwave radio sector will notice that there are three general categories of product to choose from: all-indoor, split-mount and all-outdoor, and within each, they are myriad different flavors.

All-outdoor radios are the most recent addition to the microwave radio party, and for the sake of easy reference, I’ll refer to them as ODRs (outdoor radios). These self-contained systems incorporate the traffic interfaces, switching/multiplexing elements, radio modem and radio transceiver—all packaged in a weatherproof outdoor housing. By contrast, an outdoor unit (ODU) used in split-mount systems only contains the radio transceiver, which connects to a radio modem embedded in an indoor unit (IDU). In a split-mount radio system, the IDU also provides the traffic interfaces and switching/multiplexing elements.

The rationale for ODRs is straightforward—networks are getting denser, new sites are getting smaller and established sites more densely populated. Space for equipment such as IDUs is at a premium and costs of upgrading sites with bigger equipment shelters is often not viable or possible due to site constraints. As a result, more network devices are being repackaged for deployment outdoors on supporting structures such as towers, walls or masts. Advances in electronics have made microwave radios viable for all-outdoor treatment, so ODRs came into being.

They did so to a fanfare of claims that pointed to fantastic gains in terms of operator TCO (total cost of ownership). No doubt, an ODR can deliver cost benefits, but it is important to fully scope and quantify those benefits, because although ODRs represent simplification in terms of product architecture, most networks have remained stubbornly complex. In practical terms, this means for each type of site in the network an operator needs to closely examine the gains an ODR might generate vs. a split-mount radio, for example. Our experience is that ODRs provide the most operator benefits at sites where:

  • One gigabit Ethernet (GbE) interface is adequate
  • Only a single local device will be connected (such as an LTE basestation)
  • There are no requirements to aggregate traffic from “downstream” sites
  • Out-of-band management facilities are not required
  • Non-protected (1+0) link configuration is adequate

Once operators consider sites with requirements beyond this scope—usually the majority—then ODRs (somewhat ironically) start to generate complexity and cost. This becomes manifest in the form of multiple Ethernet cable runs, multiple power cable runs, multiple PoE injectors, multiple lightning protection devices and, in some cases, the need for a separate outdoor Ethernet switch.

Even at modestly complex sites, the overhead costs ODRs can generate mean that a split-mount radio will often be a more effective option and deliver better TCO, assuming space can be found. On that note it is worth highlighting that IDUs already deployed at such sites are often modular and can be scaled without consuming any additional rack space, and the most advanced fixed (i.e., non-modular) IDUs only consume a half-rack unit of space.

On the surface, the case for ODRs can seem compelling but before jumping in, I would encourage operators to carefully examine how marketing claims translate into meaningful (real) TCO gains.

I am convinced ODRs represent a new and potentially very useful product category for microwave radio, but they are not a panacea; our experience (at Aviat Networks) is that optimum TCO is based on a mix of split-mount and all-outdoor radios (i.e., one “size” does not fit all).

So there you have it, in the right environment, an ODR can offer a winning formula but in other situations, it may not work so well. An old saying comes to mind: Knowledge is knowing a tomato is a fruit, but wisdom is knowing not to put a tomato in a fruit salad.

Next time, we will examine ODRs in more detail, how they differ and how to choose the best option for your network.

Jarlath Lally
Product Marketing Manager
Aviat Networks

Read More

Microwave Capacity: Examining Techniques to Improve Throughput

Microwave telecommunications tower, silhouette...

Recently we’ve kicked off the “Aviat Technology Series” – which are a series of bi-monthly live video streaming webinars for our customers and partners, giving a detailed overview of various technology topics (these are NOT sales pitches…)

Last week, Stuart Little and I gave a live streaming video webinar where we gave an in-depth analysis of all the possible technology options for getting the most out of your microwave system including what’s possible, what’s not, and a realistic look at what you can expect to achieve.  We covered the below topics:
•    Options for maximizing IP microwave capacity
•    Understanding capacity requirements: What’s real and what’s hype
•    The timing/availability of new capacity improvement technology

We reviewed techniques for increasing spectrum, improving spectrum utilization and growing effective utilization using higher layer protocol optimizations.  Technologies covered included: ling aggregation, co-channel dual polarization (CCDP), adaptive coding and modulation, 512/1024QAM, ethernet header compression, payload compression and asymmetrical RF.

We had lots of great questions and a ton of good feedback.  Please email: to get the URL for the microwave capacity webinar replay.

Thanks to all who participated and see you in 2 months for the next one when we’ll talk about “Ethernet Protection and Redundancy”

Gary Croke
Product Marketing

Read More

What’s The Difference between Microwave Path Availability & Error Performance?

This white paper was extremely popular when we featured it in our eNews newsletter recently. Now it’s time to share it with a wider audience.

It talks about how there are several considerations when establishing realistic outage or reliability objectives for and how the effects of long-term and short-term outages differ when it comes to microwave path engineering.

Read More

Subscribe to our newsletter