The Impact of Streaming Video on Wireless Network Services

Video call between Sweden and Singapore, on So...

Sustained video streaming, such as a video call over a mobile network, strains the stat mux paradigm of oversubscribing Ethernet microwave backhaul. However, proper management can ensure a consistent, high-quality user experience can be maintained. Image via Wikipedia (author: Kalleboo)

Mobile backhaul networks today support Ethernet microwave transport for 3G and 4G wireless technology services alongside legacy 2G and 3G TDM-based microwave equipment. However, as late as 2009 these wireless network services were solely TDM transport. One of the primary benefits of moving to Ethernet microwave transport has been the inherent statistical multiplexing (stat mux) gains. Stat mux relies on the fact that not everyone is “talking” at the same time and when they do, their IP radio packet sizes are variable, whereas networks based on TDM have to be provisioned statically for peak rates to individual wireless microwave sites.

With the advent of Ethernet, the typical practice is to oversubscribe all the wireless network services (based on individual peak rates) knowing that there is a statistical improbability of hitting the peak rate across all your wireless communication towers at the same exact moment.

Now enter video streaming where data is “streamed” between two wireless communication points over a sustained period (e.g., 30-second YouTube video clips, Skype HD Video Conferencing, Netflix movies). The sustained aspect of these video streams begins to strain the overall stat mux paradigm. Not only does video remain sustained but also it uses large-size IP radio packets that do not vary greatly. VoIP does the same thing, but the effect is much less significant as the overall bandwidth utilization is much lower.

Oversubscription becomes more challenging the more active video streaming is at any given moment. Imagine a scenario where the latest cat-playing-a-piano video gets posted online and everyone starts viewing it at virtually the same time. For a large swath of bandwidth, stat mux will reach zero for approximately four minutes. The upside is that you can add more bandwidth and/or offer differentiated wireless network services levels that guarantee certain bandwidth or application performance. Even so, video streaming does not totally negate the benefits of an Ethernet microwave transport, it just needs to be properly understood and managed to ensure a consistent user experience across all applications and services for your global wireless solutions.

Steve Loebrich
Director of Product and Solutions Marketing
Aviat Networks

Read More


‘The Cloud’ and What it Means for Wireless Technology

Cloud

Image via Wikipedia

The cloud is an all-encompassing thing that’s actually been around for a while (e.g. distributed computing, Network Attached Storage). Most of it exists today in the enterprise but is being pushed to the Internet and rebranded “The Cloud.” This affects three wireless networking segments: consumers (e.g., you, me, mom, dad), Internet providers (e.g., mobile operators, ILECs, CLECs) and wireless solutions vendors (e.g., Symmetricom, Aviat Networks).

For consumers, it represents the ability to store information—pictures, music, movies—virtually and access them wherever we go from devices of our choice. No longer do we have to worry about backing up smartphones, tablets or laptops. The downside is that this magic is going on in the background all while your data caps are being reached. So, watch out….

On the mobile operator side, this will represent a substantial increase in bandwidth used. In addition, bandwidth usage starts to become more symmetrical as more uplink bandwidth is utilized while uploading to the cloud. This also means more frequency consumption on the RAN-side as subscribers stay “on” more often. Operators need to figure how to get users off the air interface as quickly as possible. This calls for greater throughput and potentially much lower latency. Trickling data to end users compounds the air interface problem. For the most part, subscribers won’t realize what’s happening and data caps are more likely to be reached. This translates into either more revenue and/or dissatisfied customers. Clearly, operators must monetize transport more effectively and at the same time provide more bandwidth.

Lastly, for wireless solutions vendors this translates into increased sales of wireless equipment to ease the sharp increase in bandwidth consumption. This also translates into more intelligent and robust network designs (e.g., physical and logical meshes, fine-grained QoS controls) as subscribers rely more on network access for day-to-day activities. As for the cloud in general and the overall effect:

  • Traffic starts to become more and more symmetrical (i.e., photos and videos automatically upload and then downloaded to all individual peer devices (e.g., your iPhone video uploads to the cloud and then syncs to your laptop and iPad)
  • Lots more bandwidth will be used. Today, content drives bandwidth demand (e.g., you open a browser and connect to a website, you launch your Facebook mobile app and upload photos). Tomorrow, those activities will happen automatically and continuously
  • Over the Air (OTA) updates to the phone are now downloaded over Wi-Fi or 3G/4G networks. Seemingly, updates are the only things that have changed, but it still amounts to about 150 MB per phone per update—another bandwidth driver
  • More prevalent use of video conferencing—low latency, sustained bandwidth demand

Therefore, the amount of bandwidth consumption will rise dramatically this September when Apple releases iOS 5 and iCloud. Android has already driven much bandwidth demand, but it’s not nearly as “sexy” as what Apple is releasing for its 220 million users—or alternately total iOS devices: iPod touch, iPad, iPhone). It’s more than just bandwidth—it’s quality, reliable bandwidth where QoS and Adaptive Modulation will play significant roles—of this, I’m certain.

At a recent TNMO event they were talking about LTE-Advanced and leveraging the cloud for virtual hard drives. Imagine, no physical hard drive in your computer. Laptops are connected via 4G wireless/5G LTE wireless to a cloud-based hard drive, equating to lots and lots of bandwidth plus stringent latency requirements….

Steve Loebrich
Director of Product and Solutions Marketing, Aviat Networks

Read More


Subscribe to our newsletter