4 Realities about Rain Fading in Microwave Networks

Image of a thunderstorm line (in dBZ) seen on ...

Image via Wikipedia

Rain fading (also referred to as rain attenuation) at the higher microwave frequencies (“millimeter wave” bands)  has been under study for more than 60 years. Much is known about the qualitative aspects, but the problems faced by microwave transmission engineers—who must make quantitative estimates of the probability distribution of the rainfall attenuation for a given frequency band as a function of path length and geographic area—remains a most interesting challenge, albeit now greatly assisted by computer rain models.

A surprising piece of the puzzle is that the total annual rainfall in an area has almost no correlation to the rain attenuation for that area. A day with one inch of rainfall may have a path outage due to a short period of extremely high localized rain cell intensity, while another day of rain may experience little or no path attenuation because rain is spread over a long period of time, or the high intensity rain cell could miss the microwave hop completely.

Over the years, we have learned a lot about deploying millimeter wave microwave hops for our customers:

  • Rain outage approximately doubles in each higher millimeter wave band, e.g. 18 to 23 GHz
  • Rain outage is directly proportional to path length—assuming a constant fade margin for each hop
  • Rain outage in tandem-connected short hops is the same as for a single long hop—if they have the same fade margin
  • Multipath fading in optimally aligned millimeter wave hops does not occur during periods of heavy rainfall, so the entire path fade margin is available to combat rain attenuation fades

More information about assessing rain-induced attenuation is available in our white paper, Rain Fading in Microwave Networks.

Read More


Evolution of Microwave: History of Wireless Communications

The Microwave Sky

This image of microwave energy in a "total sky" picture of the known universe shows it's everywhere in primordial space, more than 13 billion years ago.

Microwaves are as old as the beginning of the universe. Well, they’ve been around for at least 13.7 billion years—very close to the total time since the Big Bang, some 14 billion years ago. However, we don’t want to go that far back in covering the history of microwave communications.

Having just observed the 155th anniversary of the birth of Nikola Tesla, arguably the most important inventor involved in radio and wireless communications, this is a good time to take a broader view of the wireless industry. If you have been in the wireless transmission field for some time, you are probably familiar with Dick Laine, Aviat Networks‘ principal engineer. He has taught a wireless transmission course for many years—for Aviat Networks and its predecessor companies.

The embedded presentation below comes from one of those courses. In a technological field filled with such well-educated scientists and engineers from some of the finest universities and colleges, it’s hard to believe that microwave solutions and radio itself started in so much controversy by men who were in many cases self-taught. Dick’s presentation goes over all of this in a bit more detail. Hopefully, it’s enough to whet your appetite to find out more. If you like the presentation, consider hearing it live or another lecture series on wireless transmission engineering at one of our open enrollment training courses.

Read More


Hybrid Microwave for Wireless Network Backhaul Evolution

Microwave telecommunications tower, silhouette...

Image via Wikipedia

There is no one-size-fits-all solution for wireless network backhaul. What will work for some operators’ mobile backhaul will not work for others. Many operators have large installed bases of TDM infrastructure, and it is too cost prohibitive to uninstall them wholesale and jump directly to a full IP mobile backhaul. There is going to be a transition period.

The transition period will need a different breed of wireless solutions. Fourth Generation Hybrid or Dual Ethernet/TDM microwave radio systems provide comprehensive transmission of both native TDM and native Ethernet/IP traffic for smooth evolution of transmission networks. They will enable the introduction of next-generation IP-based services during this transition period.

We will explore this category of digital microwave technology for wireless backhaul, which is becoming ever more important as the 4G LTE wireless revolution gets underway with all due earnestness, even while the current 3G—and even 2G—networks continue to carry traffic for the foreseeable future.

Our current white paper builds on Aviat Networks‘ previous April 2010 white paper titled “What is Packet Microwave?” and provides market data from recent industry analyst reports that demonstrate the significant and continuing role of TDM in mobile backhaul networks and some of the prevailing concerns of operators in introducing Ethernet/IP backhaul services.

Read More


Antennas: Why Size is Important for This Wireless Equipment

Antenna tower supporting several antennas. The...

Image via Wikipedia

In response to the recent FCC docket 10-153, many stakeholders proposed relaxing antennas requirements so as to allow the use of smaller antennas in certain circumstances. This is an increasingly important issue as tower rental costs can be as high as 62 percent of the total cost of ownership for a microwave solutions link. As these costs are directly related to antenna size, reducing antenna size leads to a significant reduction in the cost of ownership for microwave equipment links.

The Fixed Wireless Communications Coalition (FWCC), of which Aviat Networks is a major contributor, proposed a possible compromise that would leave Category A standards unchanged while relaxing Category B standards. The latter are less demanding than Category A, and after some further easing, might allow significantly smaller antennas. The rules should permit the use of these smaller antennas where congestion is not a problem, and require upgrades to better antennas where necessary.

A further detailed proposal from Comsearch proposed a new antenna category known as B2, which would lead to a reduction in antenna size of up to 50 percent in some frequency bands. This would be a significant cost saving for link operators.

At the present time, the industry is waiting for the FCC to deliberate on the responses to its 10-153 docket, including those on reducing antenna size.

See the briefing paper below for more information.

Ian Marshall
Regulatory Manager, Aviat Networks

Related articles

Read More


Professional Services Center in San Antonio, TX

Network Management Centre. BT has several mana...

Image via Wikipedia

Nathan Hitchcock, NOC team lead for Aviat Networks, provides guidance for all network services professionals in the company’s network operations center during its 24×7 rotation. At the NOC, Hitchcock describes a range of customers the company services—from Internet service providers to public safety networks (government wireless) . “Our customers find value in the NOC,” he says.

“It’s a natural progression that once the network is live, that the NOC just take over the managed services aspect of it,” Hitchcock says. “We provide value to our customers by helping reduce the operational expenses that are associated with managed services.”

When Aviat Networks moved its NOC to San Antonio, Texas, many backbone infrastructure and wireless security improvements were made, according to Hitchcock. And all the technical knowledge was transferred from Raleigh, N.C. He sums up the Aviat Networks’ network services value proposition as: a multi-disciplinary team that provides managed services to meet the clients’ needs.

Read More


Ireland Issues Spectrum Consultation on Wireless Communications

160

Image via Wikipedia

The Irish communications regulator, ComReg, recently issued a consultation on its spectrum management strategy for 2011-2013. This was a wide-ranging consultation covering all aspects of spectrum management. However, in terms of interest to the microwave fixed point to point business were the following items:

A stated intention to open new bands for fixed point to point microwave wireless backhaul at 26GHz, 28GHz and 31GHz in line with the relevant ECC recommendations. In addition, ComReg requested comments on the following proposals regarding the use of Adaptive Modulation (ACM) and Cross Polarization (XPIC).

“Given the benefits identified from the use of Adaptive Coding & Modulation (ACM) in terrestrial Fixed Links, ComReg is proposing to make the deployment of ACM mandatory for all new fixed link applications across all fixed link frequency bands from 01 June 2012,” the consultation reads.

“With a view to encouraging spectrum efficiency in congested frequency bands, ComReg is proposing to make dual polarization mandatory for all new fixed link applications, where more than one link is required on the same path in the same frequency band, from 1 June 2012.”

The above two proposals demonstrate ComReg’s forward vision in embracing new wireless technology to increase the viability of using microwave solutions for critical traffic. Compared with some other regulators around the world, this is a welcome and refreshing approach.

Also ComReg indicated its intention to explore the possibility of using alternative licensing schemes, e.g. light licensing or link registration, in bands above 50GHz that are under consideration for opening in Ireland. Let me know your thoughts.

Ian Marshall
Regulatory Manager, Aviat Networks

Read More



Subscribe to our newsletter