Should National Telecom Regulators Impose Buildout Requirements on Operators?


Photo credit: fingle / Foter / CC BY-NC-SA

In the mobile operator space in many countries, the national regulators are imposing so-called “buildout requirements” as a license condition on many wireless providers. In some countries, these requirements are restricted to licenses awarded by the auction process (e.g., cellular access spectrum) or block allocations while in others these conditions are attached to the majority of licenses.

Where buildout requirements are employed, a license typically has a clause that requires the licensee to build out a network/link or specified portion of a network within a certain period of time, with penalties imposed for failure to do so.

The rationale behind imposing these requirements is to ensure that after spectrum is assigned it is put to its intended use without delay. By doing this, or so the theory goes, bidders are discouraged from acquiring spectrum with the sole intent of blocking competitors’ activities without themselves offering service. Of course, the ultimate goal is the protection of spectrum—a finite and precious resource. There is no reason buildout requirements cannot be attached to any license grant, assuming that the detail of the requirements recognizes any constraints of the application for which the spectrum is sought.

Nevertheless, Aviat Networks is strongly against auctions and block allocations, but where these are a necessity then buildout requirements must be part of any award, with strong enforcement rules. The problem is that with strong enforcement operators and regulators can be at loggerheads and get tied up in court with lawsuits and countersuits for years. For example, in the U.S. you have the case of Fibertower. The FCC claims that Fibertower deliberately underbuilt its network and so moved to revoke its spectrum licenses. With the regulator moving against the operator, it came under insurmountable financial pressure and filed for bankruptcy. But even now, the operator’s creditors are fighting the FCC in order to recoup frequencies valued at more than US$100 million. So it is questionable whether this actually works in practice.

Microwave is the point
Focusing on point-to-point microwave, let’s examine the approach taken in two different countries. In the United States, for traditional link-by-link allocation, the FCC imposes an 18-month deadline by which time the link in question needs to be in service. However, in the United Kingdom, Ofcom imposes no such deadline. For certain applications, certain routes and sites are critical and can quickly become “full.” If these key locations are being filled by license applications that are not being translated into operational services, then this spectrum is effectively wasted as no one else can use it, nor is there any service being offered. Spectrum wasted in this manner reduces overall spectrum efficiency, and all spectrum authorities are motivated to ensure that spectrum is used in the most efficient way possible.

Of course having these rules is fine, but what happens when the rules are breached? In some cases, an operator will apply for an extension prior to the expiration of the original deadline; this may or may not be granted. However, the real test is what happens when the deadline passes. Ideally, what should happen is that the license(s) in question would be revoked and the associated spectrum made available for reallocation. Furthermore, if the spectrum in question was originally made available by block allocation or auction, then again, ideally, this spectrum should be returned to the pool of spectrum available for link-by-link licensing.

Additionally in shared bands, i.e., spectrum shared by the Fixed Service (FS) and the Fixed Satellite Service (FSS) should be governed by the same requirements in this instance. Therefore, unused/defunct FSS allocations/licenses should also be revoked with the spectrum being made available for reuse. In the case of FSS locations, this can have a significant effect owing to the geographic full-arc protection area that is usually associated with earth stations.

The alternative viewpoint is that the current buildout requirements are counterproductive, in their aim to foster efficient use of spectrum. One reason cited for this view is that it takes time for an equipment supply ecosystem to develop, which will serve the spectrum users. However, when we examine this claim more carefully, it seems that this is often used where the spectrum has been awarded to a single user either by block allocation or by auction. We have written before about how auctions and block allocations are unsuitable for point-to-point microwave, and the claim above is a direct result of this process, which negatively impacts the number of operators. In turn, that reduces the ranks of equipment vendors, leading to thinner competition and, therefore, decreased incentive for innovation. This situation is made worse if the operator in question chooses a band plan that is nonstandard in terms of either existing U.S. or international arrangements.

Signal termination
In the final analysis, it does not serve any stakeholders’ goals to have valuable spectrum allocated but unutilized. Thus, having buildout requirements would appear to be a good idea. But along with that, an effective mechanism for reclaiming and making available to others spectrum that runs afoul of these rules is paramount to making the process work for the Greater Good. In Aviat’s view, buildout requirements are a valuable tool in ensuring spectrum efficiency and as such, their use should be seriously considered in all countries.

Ian Marshall
Regulatory Manager
Aviat Networks

Read More

Lessons of LTE Africa 2013: Bringing Broadband Back to Basics

Cell tower with microwave: many lessons were taught and learned at LTE Africa, Aviat's Siphiwe Nelwamondo reports.

Photo credit: Jeff Kubina / Foter / CC BY-SA

Africa’s only dedicated LTE event, LTE Africa 2013, took place in Cape Town this July 2013, bringing operators, vendors, mobile device makers, regulators and standardization bodies together under one roof to discuss LTE. On the agenda were the opportunities LTE can bring, obstacles to deployment, monetization challenges, current African success stories and future directions that LTE may take in Africa.

At the conference, operators grappled with the opportunity they face with LTE. What emerged as the main challenges for operators were spectrum, monetization and device availability—at the right price—for the African market.

In many exchanges, policymakers and regulators were beseeched to make spectrum available for LTE. Dr. Ernest Ndukwe, former CEO of the Nigerian Communications Commission, said, “Unless African leaders create an environment which encourages broadband network investments and makes it easy for companies to roll out broadband services, the situation is unlikely to change in the near future.” Operators were equally concerned about monetization of LTE so as to be able to recover their CAPEX—not to mention OPEX. (Others have not fully recovered their investments on 3G yet!)

Nonetheless, they are now expected to move to LTE. It was clear that operators would need to innovate how they do business by implementing new pricing strategies such as “value bundling” solutions, which would move them away from the cost-per-megabyte pricing tariff they firmly cling to today. Finally, a mobile device priced correctly for the African market has been earmarked as the enabler needed for massive adoption of LTE in Africa.

However, the conference was not all gloom and doom as operators who have successfully implemented LTE, such as Smile, MTC and others, shared information on how they made it possible. They highlighted how they implemented LTE. One of the key areas they focused on was in what way they backhaul LTE traffic.

Successful implementations revealed that for Africa—considering Africa’s demographics—practical and cost-effective implementation of LTE does not allow for 100 percent fiber backhaul, especially since realistic throughput demands of a typical three-sector LTE site max out at about 150 Mbps. With microwave systems easily able to reach 400 Mbps and even 2Gbps, microwave is more than capable of catering to an LTE site’s requirements and is undoubtedly the technology of choice for LTE backhaul except at sites where fiber already exists.

Microwave has cost benefits when deploying in areas lacking fiber, and it can be a cost-effective way to connect rural areas. Microwave also has the benefits of being quicker-to-deployment compared to the trenching needed for fiber. By 2017, industry analysts foresee that microwave backhaul will account for more than 50 percent of all LTE cell sites in Africa.

Siphiwe Nelwamondo
Technical Marketing Manager, South Africa
Aviat Networks

Read More

85 Microwave Operators tell us their Biggest Backhaul Challenge


England: Campion Hills communications mast with microwave antennae. Photo credit: David Stowell [CC-BY-SA-2.0], via Wikimedia Commons

The general mobile industry sentiment has typically been that the capacity bottleneck is the biggest challenge in backhaul. Thus, the focus has been on adding more capacity to address the surge of 3G and now 4G traffic. So you might think that this concern would rank first, particularly among microwave-centric operators, who are often looking to maximize their network throughput. We recently commissioned the experts at Heavy Reading to do a custom survey to get some quantifiable data to clarify this key question and a few others.

85 mobile operators were selected and surveyed globally, including a good cross-section from both developed and emerging markets. The respondents were screened to ensure that they all had a stake in microwave-specific backhaul: 93 percent had deployed microwave and the rest had plans to deploy it. In fact, 45 percent were categorized as heavy microwave users—those where more than 50 percent of their cell sites were served by microwave backhaul.

So we asked this select group, which consisted of mostly planners, engineers and strategy leaders, “What is the biggest challenge your company faces regarding the future development and deployment of microwave backhaul?” 

The results were interesting in that “total cost of ownership” actually eclipsed “increasing capacity” as their biggest challenge, as shown in the pie chart of survey responses below.

Read More

If Microwave Didn’t Exist for Small Cells, We’d Have to Invent It!


Microwave backhaul is being reassessed as a strategy for small cell LTE traffic aggregation on business campuses. Photo credit: cbmd / / CC BY-NC-ND

Small cells get all the press! As LTE rolls out in networks on every continent except Antarctica, small cells are grabbing headlines in technology trades and geek fan-boy blogs across the Internet. They’ll be needed sooner or later to provide LTE access in all those places around corners of buildings on business campuses, in urban parks surrounded by concrete canyons and other inaccessible locations. But little or only passing thought is paid to the ways in which small cell traffic will be aggregated back to the main network.

However, in a new FierceWireless ebook, microwave backhaul is pointed out as one of the critical strategies to provide throughput for all the small cell traffic to come. Microwave was here before small cell. And it’s such a good fit for small cell, if it had not already existed, we’d have to invent it now! Our director of product marketing, Stuart Little, tells FierceWireless that microwave meets the capacity needs of LTE backhaul. And Fierce adds modern microwave technology is changing the perceptions of its use for small cell backhaul.

Neither sleet nor rain nor changing K factors at night will stop microwave from small cell service. Specifically, Little tells Fierce that rain has little to no effect on microwave at the lower frequencies, and where it does have some effect in the higher bands, different technical techniques can help mitigate it. To find out more about small cell microwave backhaul, we recommend any of the Aviat blogs and related articles below. Or just read the FierceWireless ebook.

Read More

Public Safety Broadband Stakeholders Have to Decide

PSCR-hosted-the-Public-Safety-Broadband-Stakeholder-Conference-June-4-6-2013-in-Westminster-ColoradoIn the effort to build out the nationwide Public Safety Broadband Network, stakeholders are making themselves heard. They were heard at the Public Safety Broadband Stakeholder Conference held last week, June 4-6, 2013, outside of Denver, Colo., hosted by the Public Safety Communications Research lab. It brought to the surface the many competing agendas local public safety network operators, the First Responder Network Authority (FirstNet), wired and wireless vendors and even mobile app developers contend with.

Aviat Networks had a chance to sit down with Tammy Parker, editor of FierceBroadbandWireless, during the conference to discuss some of these issues, such as the debate on the effectiveness of fiber optic technology in backhauling public safety networks. The fact is that microwave indeed will be a key element in the design and implementation of the FirstNet mission-critical network. And fiber does not provide the reliability and survivability needed. In the commercial mobile telecom space, the poor survivability of fiber is tolerated, but when it comes down to crunch time when lives are on the line, public safety operators will take microwave over leased fiber.

Randy Jenkins, Aviat director of business development, expanded on this vital decision for public safety operators to make between microwave and fiber. “As a vendor vested in the public safety community for more than 50 years, Aviat understands its responsibility to find innovative ways of offering microwave solutions that can save CAPEX and OPEX in support of the biggest challenge FirstNet is addressing—not enough money. Aviat is bringing backhaul innovation to this program.”

The bottom line is that backhaul is always the bottleneck in any network planning. In that case, it’s important for public safety operators to address that aspect first, according to Tony Ljubicich, Aviat’s vice president of sales and services.

If you would like to hear more about how Aviat Networks is making microwave backhaul the best choice for FirstNet-ready public safety, leave your contact information and reference the upcoming webinar on public safety broadband backhaul for a major statewide network. We’ll let you know when it’s scheduled.

Read More

Low Latency Microwave Serves Many Purposes

Trevor Burchell, VP of Europe, Africa, Middle East Sales and Services.

Trevor Burchell, Aviat VP of Middle East, Africa and Europe Sales and Services.

In a recent interview, Trevor Burchell, Aviat Networks VP for Middle East, Africa and Europe sales and services, commented on the recent trend of low latency microwave networks. Though increasingly found in the telecom infrastructure of financial institutions, low latency microwave is not limited to these applications, he says. Burchell sees its applicability in uses as diverse as health care, government and utilities.

Some considerations are common to all microwave networks—low latency and all others, according to Burchell. Proper path planning and network engineering must be executed in order to have the most fully functional wireless point-to-point  backhaul possible, he says.

In general, Burchell sees microwave as the best choice where telecommunications have to be rolled out quickly and cost effectively. There are many other points to consider. The complete interview is available online in Engineering News.

Read More

Low Latency Microwave Crosses Europe for the First Time


Successful financial trades depend on ultra low latency microwave networks. Photo credit: francisco.j.gonzalez / / CC BY

Germany is well-known for its autobahn highway system, where there are no official speed limits. Now there is a new high-speed network that traverses Western Europe from Frankfurt in Germany to London in the UK.

In addition, you may have read elsewhere in recent weeks about low latency microwave networks being constructed in the United States in support of the financial markets. The busiest route there is between the financial centers in Chicago and New York, where microwave can shave off 5 milliseconds off the transmission time along the 700 mile (1,000 km) route when compared to fastest fiber network (13 milliseconds). This saving directly equates to revenue for trading houses that are able to leverage this speed advantage.

In the United States, planning and deploying a point-to-point (PTP) microwave network is relatively predictable and straightforward: acquire sites and avoid interference from other network operators. Where PTP wireless networks cross state boundaries, a network operator need only deal with the national telecom regulator, the Federal Communications Commission (FCC), when obtaining required licenses to operate the microwave system.

But in Europe, this is a very different matter. While trans-European fiber networks have been a reality for many years, a microwave route like London to Frankfurt must traverse several national borders, forcing operators to deal with multiple regulators, with complex negotiations needed for microwave paths that cross national boundaries. For this reason very few—if any—microwave networks of this type have been built, up until now. However, the opportunities offered by the combination of the new low latency sector, along with the performance advantage of microwave over fiber, have now made the case  for these kinds of networks compelling enough to outweigh the challenges, and costs, of planning and implementing them.

For a low-latency microwave network servicing the financial sector on the London-to-Frankfurt route, there are a number of major challenges beyond just identifying and securing suitable sites and coordinating frequencies. The difficulty of planning a long trunk route is also greatly exacerbated by going through the densely urbanized region of Western Europe. This results in a constant iteration between finding the right route, identifying accessible sites, and securing required microwave frequencies. To be successful you need all three—a site on a great route is useless if no microwave spectrum is available. All the while, there are other competing providers all trying to complete the same route in the fastest time possible—not only in latency terms, but also time to revenue.

This poses huge potential pitfalls in having to take the long way around, requiring additional sites and links, if a site is not available. The added latency caused by any such deviation could kill the entire project. This race is like no other in the microwave business—whoever is fastest wins first prize, and it is winner take all in this competition. The potential revenue for the London-to-Frankfurt low-latency path is quite staggering, even on a regular day, but on busy days when the market is volatile the potential can be much higher.  Operators can plan on recouping their total investment in the microwave network in well under a year. Then once you have the most direct route, compared to your competitors, your problems may not be over, so it can come down to squeezing those extra few microseconds, or even nanoseconds, out of your equipment.

On this particular route there is also one significant natural barrier to contend with—the English Channel. There are only a few ways across that are short enough to allow a reliable microwave path, space diversity protection is a must and only a few towers are tall enough to support these distances. Even though there are no obstacles over the channel (apart from the occasional container ship), towers need to be high enough to allow the microwave signal to shoot over the bulge of the earth. Again, securing tower space at these sites is critical to success, but also obtaining the right to use one or more of a finite pool of available frequency channels, otherwise fiber may be needed across this stage, adding latency. One group even took the step of purchasing a microwave site in the Low Countries to secure it precisely for this purpose.

London to Frankfurt will only be the start for low latency microwave networks in Europe, as there is always a need and an opportunity to provide competitive transmission services to other financial centers throughout the continent. The winners will be those with the speed and agility to quickly seize these opportunities, along with working with the right microwave partner who can help them with the intensely complex business of planning and deploying these trans-national networks, and who can also supply microwave systems with ultra-low latency performance.

We will have more to say publicly on this topic in the near future. Or if you prefer not to wait that long, we would be more than happy to have a private conversation about low-latency microwave with you.

Read More

Microwaves Could Solve Need for Long-Haul, Low-Latency Networks

Microwaves Could Solve Need for Long-Haul, Low-Latency Networks (via slashdot)

While high-speed optical fiber might be the way to go for large national research networks, point-to-point microwave connections have emerged as key links between financial exchanges.  The reason? Ultra-low latency. With widespread interest in sending the timeliest data possible, two separate microwave…

All-Outdoor Radios Part II: Three Ways to Choose the Right ODR

Photo credit: mrbill / / CC BY

Photo credit: mrbill / / CC BY

A quick Google-glance around the Internet will reveal a panoply of all-outdoor radios (ODRs) in both microwave and millimeter-wave bands. ODRs do not conform to a universal norm in terms of networking features, power consumption, bandwidth scalability (i.e., capacity) or outright radio horsepower (i.e., system gain).

So if you find yourself asking the questions, “Which ODR is the best fit for my network?” or “How do I narrow the ODR field?” it is good to start with the basics.

The right product choice can be quickly resolved—or at least the candidates can be short-listed—by focusing on three ODR product attributes that most heavily influence the value-for-the-money (i.e., total cost of ownership or TCO) equation:

  • Packet throughput capacity, which dictates the usable life of the ODR
  • Power consumption, which affects the energy bill
  • RF performance, which impacts antenna size—more system gain equates to smaller antennas

For many microwave backhaul networks, the growth in underlying traffic is such that products which cannot scale to 500 Mbps/1 Gbps per channel will run out of momentum too early and precipitate the dreaded “forklift upgrade” (also known as the “CFO’s nightmare”).

These same CFOs are also suffering sleepless nights due to rising energy costs—which in some countries can double year-over-year. Therefore, it behooves the operator to seek and prioritize the use of über energy-efficient products, such as the Aviat WTM 3200, which—and this is important—do not compromise on RF performance.

That brings me to my last point: System gain (RF performance) remains a core TCO factor insofar as it can drive smaller antenna usage with the concomitant capex savings. Still, there might be little to differentiate ODRs in terms of RF performance—in which case the spotlight will fall on these other attributes to sway the decision.

Having worked on the operator side and wrestled with TCO analysis on many occasions, my experience tells me that you can narrow your ODR choice quickly by reflecting on these three attributes and the TCO gains they can deliver.

Jarlath Lally
Product Marketing Manager
Aviat Networks

Read More

On Wall Street Low Latency Microwave Fulfills Faster than Fiber

Happy Holidays and Happy New Year from all of us at Aviat Networks. Just as you are finishing those final gifting ideas for the winter, we would like to share a few thoughts from Travis Mitchell, Aviat Networks director of low latency business development. In the just published article “Microwave Technology for Low Latency Trading Networks” in Wall Street & Technology, Travis clears up the misconceptions that trading technologists may have about microwave communications, many of which have carried over from the age of analog radio and do not apply to digital microwave.

In addition, Travis spells out the advantages that low latency microwave has over fiber optic technology. Two of these are the point-to-point, direct line-of-sight communications between microwave stations and the absolute higher speed microwaves can achieve. In comparison, fiber communications oftentimes do not run directly from Point A to Point B but must instead wind their way around obstacles, burrow underground, climb tall buildings and so on before reaching their destination. This extra distance covered contributes delay to the overall latency experienced by trades sent via fiber as compared to microwave.

Then the immutable laws of nature tell us that microwave communications—even traveling through the atmosphere—approach very close to the speed of light. On the other hand, laser communications traversing the dense medium of fiber optics are much slower than the speed of light—many tens of percentage points slower than the speed of light.

To close, Travis briefly summarizes other factors that go into making low latency microwave networking the choice for traders over fiber, including minimizing the network route, maximizing the distance between microwave hops and using passive repeater technology, when appropriate. For the whole story, see the article. Other resources also include our low latency microwave white paper and low latency webinar replay.

Read More

Subscribe to our newsletter