How an Integrated Microwave-IP/MPLS Solution Reduces Latency

How an Integrated Microwave-IP/MPLS Solution Reduces Latency

The point of this post is to determine the amount of latency reduction possible with a one box integrated microwave router solution when compared to a two-box (separate router + microwave) offering. By how much does the one box solution improve latency?

Latency is important to all network operators. The lower the end-to-end delay the better it is for all types of applications.

For example latency is critically important to mobile network operators (MNOs) for LTE Advanced features like coordinated multi-point (COMP) and MIMO, which require extremely tight latency. CRAN architectures are also demanding tighter latency from the backhaul.

In addition, for latency sensitive applications like Teleprotection, SCADA and simulcast in private markets such as public safety, utilities and the federal government will greatly benefit from lower latency network performance. For other customers, lower latency is critical for synchronization and HD video transport.

Read More


Getting it Done! Aviat & Australia Public Safety Networks

Getting it Done! Aviat & Australia Public Safety Networks

The public safety market has relied for many years on Aviat Networks to be a supplier of mission-critical microwave backhaul equipment. For example, since the introduction of the Eclipse microwave radio a few years ago, it has been received very successfully in the Australia public safety market. In the last five years, Aviat has sold and deployed thousands of radios (i.e., TRs) in the public safety and life critical radio ecosystem.

“The cutting-edge Gigabit Ethernet and IP capabilities of Eclipse were critical for Australia government agencies,” says Raj Kumar, vice president, sales and services, Asia Pacific, Aviat Networks. “As radio sites rolled out across Australia, Eclipse has enabled efficient deployment of multiple radio carriers in a single chassis—a mission-critical advantage for the simulcast trunking sites.”

Read More


Adaptive Media Awareness: Making Layer 3 Microwave Aware

Adaptive Media Awareness: Making Layer 3 Microwave Aware

In many wireless networks, transport engineering looks after the microwave radio function while the IT department has domain over IP equipment. These two organizations started independently and grew separately over many years. It did not seem that there was any problem with this arrangement.

However, it led to the selection of equipment—radios and routers—that worked really well on their own but had no awareness of one another. Not surprisingly, these technology solutions did not perform together optimally.

Read More


AfricaCom Demos! Come See the All-outdoor Microwave Router

Aviat-Networks-Demos-CTR-8380-at-AfricaCom-17-19-November-2015Aviat Networks We’re taking appointments for a limited number of demo slots. Sign up now before they’re all gone!

Read More


Case for IP/MPLS Routers at the Small Cell…but not Just any Router!

Case for IP/MPLS Routers at the Small Cell…but not Just any Router!

With the goal of a hyper-meshed 5G street level network, clearly today’s small cell deployments represent just an interim phase in a progressive network densification—pushing the network outward. This means today’s small cell sites will become tomorrow’s macrocells, or hub sites.

Future-looking mobile operators have planned for this eventuality. In the developed world, small cell and the Internet of Things (IoT) drive mobile network densification. However, in the developing world the primary goal of enterprise connectivity spurs network densification, due to lack of wireline infrastructure to business buildings. The end result of network densification is the same.

Read More


3 Ways to Get Smart About Nodal Microwave

3 Ways to Get Smart About Nodal Microwave

At a time in the not-so-distant past, there was only one way to implement microwave radio: one radio link per microwave terminal. Did not matter what type of link it concerned: protected, non-protected or multi-channel. From the advent of digital microwave radio in the 1980s and 1990s, terminals typically had no options for integration of co-located telecom devices. And to interconnect muxes or switches required external cabling and possibly a patch-panel.

Then in the early 2000s, so-called “nodal” radios came into vogue. Designed to address the drawbacks of the one-radio-one-link paradigm, a single microwave radio node could serve as a platform for multiple links. There were still limitations when it came to radio and switch interactions, but multiple sources of traffic could now be integrated and connected on the nodal platform.

Read More


Layer 3 intelligence: cell sites need more than dumb pipes

Artificial Intelligence. Photo credit: miuenski / Foter / CC BY-NC-SA

Artificial Intelligence. Photo credit: miuenski / Foter / CC BY-NC-SA

Once upon a time, cell sites served as little more than passive pass-throughs for phone calls and text messages. Because voice calls and SMS posts did not require much wireless capacity cell sites did not require very robust provisioning. Now that the Internet has gone fully mobile with streaming videos and real-time applications such as VoLTE and IPTV regularly crushing network capacity design parameters, the time to get smart about backhaul and access traffic has arrived. The time for Layer 3 intelligence is now.

In fact, for some time mobile cell sites have transitioned from simple Layer 2 connected sites for 1990s-style mobile phone and data access to multipurpose centers for delivering new, smart device services. However, they can only provide new, smart services if they are built upon Layer 3 technology that offers intelligent handling of wireless traffic. Only IP routing technology is capable of such functionality.

But here comes the catch regarding IP routers providing Layer 3 intelligence at the cell site. With more than 50 percent of the wireless traffic in the world going to and coming from mobile sites through backhaul radio, Layer 3 intelligence must have awareness of microwave networking. And regular routers just do not offer microwave awareness. A new class of device must fill the void left by regular routers that frankly do not have enough “smarts” to deliver Layer 3 intelligence for cell sites that depend on microwave backhaul. A device that combines the best attributes of microwave radios and IP routers.

To provide a closer examination of this issue, Aviat Networks has authored a new white paper—no registration required—that makes the case for Layer 3 intelligence at the cell site. And how to implement a new class of “smart” devices that enable microwave radio awareness with IP routing.

Read More


IP/MPLS: Coming to a Village near you

Aviat-Networks-Hearts-MPLS-February-06-2015

I Heart MPLS. Photo credit: swirlspice / Foter / CC BY-NC-ND

Whether the local police department responding to a burglary call or firefighters putting out a blaze in the historic district, first responders across America rely on mission-critical communications infrastructure to provide timely, reliable and secure voice, video and data services to do the job.

In our data-infused, mobile and Internet-connected world, public safety agencies have come to realize that upgrading infrastructure to IP/MPLS technology is the best way to lower costs and provide rich services in a scalable way, while enabling effective communication with peer local, state and federal organizations. Access to high volumes of data and the ability to share it with key stakeholders allows public safety professionals to make rapid decisions and speed up actions.

IP/MPLS and Microwave: Better Together
At Aviat Networks, we have blazed a path to IP in privately operated networks with our hybrid IP/TDM microwave radios, which efficiently converge packet-based traffic with legacy TDM. This solution gives public safety network operators a concurrence of technology while migration decisions and investments are made.

Recently, Aviat introduced the term “microwave routing” with the launch of its CTR platform. At its core, microwave routing is about integrating IP/MPLS capability into the microwave layer to increase transport intelligence while decreasing cost and complexity. As part of its portfolio, Aviat features the highly resilient CTR 8611 microwave router, which has been designed to meet the needs of public safety agencies today and tomorrow—addressing a future that is sure to include LTE/LTE-Advanced technology and a vast new buildout of advanced networking infrastructure ushered in by the FirstNet initiative.

IP/MPLS in Action
One example of IP/MPLS in public safety networks can be found in the Northeastern United States, where a major statewide public safety agency recently adopted IP/MPLS functionality in its backhaul. This deployment is based on the CTR 8611 and ProVision network management system (NMS). ProVision, with its new INM package, provides a smarter end-to-end, point-and-click IP/MPLS service management solution.

Aviat-Networks-Hearts-MPLS-coffee-cup-February-06-2015

I Heart MPLS (the coffee mug). Photo credit: emma trithart / Foter / CC BY-ND

Armed with these tools, this public safety agency turned up a complete IP/MPLS solution for its mission-critical networks, which includes microwave radios, microwave routers and network management. Aviat supports the agency with turnkey services to simplify the network design, install and commission equipment and provide post-deployment support.

IP/MPLS for Everyone
Since 1999, IP/MPLS has been deployed in the mainstream of networking. Until now, its implementation has largely been the domain of wireline telephone companies and more recently mobile operators. However, we now see private network operators adopt IP/MPLS technology because of its superiority and economic benefits. Although IP/MPLS is not something that is perceptible by the ordinary citizen, its positive impact on our daily lives is significant. We Heart IP/MPLS!

Louis Scialabba
North America Marketing
Aviat Networks

Read More


Positively Sold on MPLS at the Cell Site

MPLS at the cell site via microwave routers will positively supercharge service revenues for mobile operators. Photo credit: <a href="https://www.flickr.com/photos/tomgehrke/9656826700/">Thomas Gehrke</a> / <a href="http://foter.com">Foter</a> / <a href="http://creativecommons.org/licenses/by-nc-nd/2.0/">Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Generic (CC BY-NC-ND 2.0)</a>

MPLS at the cell site via microwave routers will positively supercharge service revenues for mobile operators. Photo credit: Thomas Gehrke / Foter / Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Generic (CC BY-NC-ND 2.0)

Mobile industry enthusiasts have been warned at length about the proliferation of LTE devices forcing backhaul to become markedly different than it is today, especially in terms of capacity delivery. Other challenges for the service provider include rising cost of capital, increasing network complexity and the ability to gracefully accommodate future technology shifts such as SDN, NFV and SON—Software-Defined Networking, Network Function Virtualization, Self-Optimizing Networks. A Layer 3 IP/MPLS topology has addressed many of these goals so far in the aggregation and at the service provider edge of the network. MPLS, Multiprotocol Label Switching, in particular, has offered converged service delivery, fast failure recovery and advanced Quality of Service.

So what’s next? The fundamental transformation needed next is at the cell site, which is evolving from its basic role of housing a base station to the new reality of enhanced service delivery hub. Why is this important? It’s simple: MPLS allows operators to offer enhanced revenue-generating services while simultaneously enriching the consumer experience and feeding an entire mobile ecosystem.

Battling rising costs by monetizing new services
The day of reckoning for operators is predicted to come with the confluence of rising costs and shrinking ARPUs, leading to unsustainable losses. Additional revenue sources are the key to profitability, provided they could be enabled swiftly and seamlessly. Fortunately, MPLS is available as a steppingstone to new services. As high capacity and scale infiltrate the end-to-end network, the traditional macro site can be considered the new point-of-presence for revenue generation. MPLS-enabled services include Layer 3 VPNs (L3VPN), Layer 2 VPNs (L2VPN) and Virtual Private LAN Service (VPLS). L3 VPNs are attractive to customers (e.g. enterprises, government) who want to leverage the service provider’s technical expertise to ensure efficient site-to-site routing. L2 VPNs are attractive to customers who want complete control of their own routing. Finally, VPLS makes the service provider’s network look like a single Ethernet switch from the customer’s viewpoint, effectively making their WAN look just like their local campus.

For the mobile provider, the backhaul topology changes have already started to take shape, with Small Cell as one example of how cell sites will evolve, essentially becoming aggregation nodes as small cells (i.e., cloud RAN, IP, wifi) are added to network. This leads to a tangled web of complexity in a modern, heterogeneous network.

Technology flexibility to alleviate network complexity
To date, MPLS-enabled routers are the only proven solution to cost effectively converge multi-service interfaces onto a single low cost IP transport platform. The multitude of devices at the cell site includes legacy interfaces such as TDM, ATM and even Frame Relay. With its ability to decouple protocols from their physical transport medium, MPLS provides a single converged transport solution for all access technologies. As MPLS is generally deployed in core networks, adding it in the access is just an extension of the existing network transport architecture.

Beyond multiprotocol capability, the current hype of SDN, NFV and SON ushers in new challenges that are intended to optimize, virtualize and control the network—albeit with a significant operational learning curve. The capabilities of MPLS align with each of these goals, when they come. MPLS enables vendors to offer solutions that simplify management and protocols, provides fast adaptation for new services and eases the burden on personnel for general network turnup and maintenance—including tasks such as new base station provisioning, debugging, troubleshooting and performance monitoring

Benefits of IP/MPLS at the cell site
The benefits of IP/MPLS at the cell site are numerous, especially for LTE and LTE-A deployments. When compared to flat Carrier Ethernet networks, routers can scale to vast numbers of nodes. MPLS enables a scalable X2 network design. (X2 is the LTE interface used for Handover, Load Management, Mobility Optimization, Network Optimization and LTE-Advanced CoMP eNodeB coordination.) With eNodeBs on different subnets, routing is required between Layer 2 domains for a complete X2 solution.

MPLS-Traffic Engineering (MPLS-TE) provides operators with capability to steer traffic across backhaul networks, thereby increasing overall capacity and lowering latency for latency sensitive traffic flows—this is an important requirement for LTE-Advanced. MPLS-TE can increase backhaul capacity by 50 percent when compared to L2 networks.

How to Add IP/MPLS to the cell site
Introduction of IP/MPLS into the access network can be easily accomplished with networking platforms such as the Aviat CTR microwave router. The CTR 8540 is the industry’s first purpose-built microwave router—a unique concept that merges the functionality of an indoor microwave radio and a cell site router into an integrated solution, simplifying IP/MPLS deployments and creating a better performing network. The Aviat CTR helps operators avoid the investment of expensive standalone routers, translating to overall fewer boxes to buy, deploy and maintain. See more information on Aviat’s IP/MPLS solutions.

Louis Scialabba
Senior Manager of Marketing
Aviat Networks

Read More


Up to the Challenge? Mobile Operators Look for New Business

Up to the Challenge? Mobile Operators Look for New Business

The mobile phone industry has been mature for some time. Around the world, most people who want and are able to use a cellular handset already have one—sometimes more than one. Even with innovations such as HSPA+, LTE and LTE-A becoming mainstream, average revenue per user (ARPU) continues to decline. Mobile operators may be at the crossroads. They are certainly at an inflection point. How to counter the trend is what operators must decide.

Read More


Subscribe to our newsletter