Simplifying Carrier Ethernet Networks Scalability and Operations

Aviat microwave radios help overcome scale and complexity of Carrier Ethernet technology

As symbolized at the recent EANTC interoperability testing event, Aviat microwave radios can help solve the complexity and scalability problems of Carrier Ethernet technology.

Carrier Ethernet (CE) transport networks are growing in both scale and complexity, requiring both vendors and operators to deliver solutions to sustain their growth. To help address this, Aviat Networks recently participated in the European Advanced Networking Testing Center’s (EANTC) annual multi-vendor interoperability testing event to validate several aspects of scaling CE networks, among other things.

Increasing CE network sizes increase the complexity of management—especially from a services perspective—when CE services span multiple network domains. The ability to partition management domains and effectively manage alarms that accurately identify and propagate notification of network faults, dramatically speeds up the fault isolation and resolution process across large networks. Utilizing and effectively implementing “Hierarchical Service OAM” in growing CE networks is valuable to overcoming this challenge and was a key area of the recent interoperability testing.

Another critical aspect of growth is dealing with multi-technology—not just multi-vendor—interoperability. As CE networks scale, there is an increasing mix of Ethernet switching, MPLS and, most recently, MPLS-TP internetworking emerging. One potentially complex area that was also tested was validating the operation and survivability of intersecting Ethernet and MPLS-TP rings in a multi-homed topology. The “ERPSv2 and VPLS Interworking” test validated that standards-based G.8032 Ethernet protected rings and MPLS-TP VPLS rings can interoperate, or more significantly “co-operate,” to allow complex multi-technology networks to deliver reliable end-to-end services.

To learn about these aspects of scaling and dealing with complex CE networks check out the EANTC white paper for more details.

Errol Binda
Sr. Product and Solutions Marketing Manager
Aviat Networks

Read More


How is Buying a Wireless Network like Buying a Boat?

Downeast style charter boat Wreck Valley

Buying a network is like buying a boat in that you do not really know what you need/want until after you have bought it. (Photo credit: Wreckvalle via Wikipedia)

Think about this phrase carefully: “Buy your second boat first.” Lately, I have been thinking of that phrase, which I once read in a boating magazine, and how it parallels some of the thinking processes wireless operators go through when making their technology and product decisions.

Often, when it comes to boating, you do not know what kind of “boat” you want or that you are even in the market. You show up to the boat show and are overwhelmed by the number of models, features, prices, etc.

To make a long story short, you end up picking something that is shiny/new, fits your near-term budget and matches how you envision the experience. What you did not know is how the “boat” rides in the water, how well it will perform with your children trailing in the water in an inner tube, how it is at storing all your swag, how roomy it really is once you add your friend’s family and the dog, etc. It is only after you get to know these things and “boating” in general that you start to realize what it is that you really want.

But now, you are stuck for at least a few years since—as you can imagine—you cannot easily trade in a “boat” that you have owned for just a short period of time. You need to stick it out until it makes sense financially, all the while watching “boats” you really want zipping around on the lake. If only you could go back in time and buy your second boat first. This experience draws parallels to wireless network buying decisions for a few reasons:

  1. Depreciation of wireless networking assets—much like a boat, the network does not pay for itself for a number of years down the road. Memories and the fun on the boat is really the only way to assign the boat a monetary value, but a wireless network is similar in that its usage is paying down on the investment
  2. What’s shiny/new is not always what you actually need—don’t be emotional. You need to understand what it is you really want to build toward. Stop thinking about how you can get by on the cheap to satisfy a relatively short-term, emotional goal
  3. Experience/expertise—whether buying a boat or buying a wireless network, find someone you can trust, someone who has done it before and has the experience to work with you on the complete package, the solution and total cost of ownership. Test-drive your friend’s boat for a day or take him to the boat show

Suffice to say you really cannot predict the future, but you should know where you want to go and where you want to be. Knowing you should be thinking about how to build the right network first just makes sense.

Steven Loebrich
Director, Partner and Solutions Marketing
Aviat Networks

Read More


Utilities Must Work Closely with Wireless Vendors on Smart Grid

At the UTC Telecom 2012 show, Aviat Networks was able to meet with utilities regarding their networking needs. Bottomline, utilities must work closely with their wireless backhaul and other solution providers in order to implement smart grid capabilities.

UTC Telecom 2012 is the annual show of the utilities industry in North America. New technologies and products were displayed to help the industry with its latest challenges. Also various utilities shared their experiences in implementing new networks to deliver leading edge smart grid capabilities.

The show was extremely well attended with a myriad of vendors including many consulting firms. The key message that I took away was the need for utilities to work very closely with their equipment vendors—especially wireless backhaul solution providers—and consultants to implement next generation networks capable of handling the multitude of applications associated with smart grid.

It was interesting to hear from AltaLink about the findings from its extensive lab testing and network implementation:

  • How far do you drive MPLS into the network?
  • How do you “tweak” the MPLS settings to accommodate microwave radios adapting in modulation?
  • What kind of MTU sizes need to be passed and how well do vendor capacities relate to the particular MTU sizes?

BC Hydro talked to the two critical issues it is struggling with: end-to-end management and security across the entire network. Balance the needs/wants of the IT dept., the communications dept. and various internal administrative groups is a real task! Some people think that only the commercial mobile networks must deal with overzealous users demanding unlimited bandwidth to address their video/gaming/voice applications…what happens when all the utilities’ departments find out that there is bandwidth available?!

Aviat Networks’ Eclipse Packet Node radios and skilled network engineers can help you find the right solution for your smart grid implementation. Whether your utility is just starting to look at the issues or ready to buy the critical components of the network, Aviat Networks is able to help.

Randy Jenkins
Director of Business Development
Aviat Networks

Read More


‘The Cloud’ and What it Means for Wireless Technology

Cloud

Image via Wikipedia

The cloud is an all-encompassing thing that’s actually been around for a while (e.g. distributed computing, Network Attached Storage). Most of it exists today in the enterprise but is being pushed to the Internet and rebranded “The Cloud.” This affects three wireless networking segments: consumers (e.g., you, me, mom, dad), Internet providers (e.g., mobile operators, ILECs, CLECs) and wireless solutions vendors (e.g., Symmetricom, Aviat Networks).

For consumers, it represents the ability to store information—pictures, music, movies—virtually and access them wherever we go from devices of our choice. No longer do we have to worry about backing up smartphones, tablets or laptops. The downside is that this magic is going on in the background all while your data caps are being reached. So, watch out….

On the mobile operator side, this will represent a substantial increase in bandwidth used. In addition, bandwidth usage starts to become more symmetrical as more uplink bandwidth is utilized while uploading to the cloud. This also means more frequency consumption on the RAN-side as subscribers stay “on” more often. Operators need to figure how to get users off the air interface as quickly as possible. This calls for greater throughput and potentially much lower latency. Trickling data to end users compounds the air interface problem. For the most part, subscribers won’t realize what’s happening and data caps are more likely to be reached. This translates into either more revenue and/or dissatisfied customers. Clearly, operators must monetize transport more effectively and at the same time provide more bandwidth.

Lastly, for wireless solutions vendors this translates into increased sales of wireless equipment to ease the sharp increase in bandwidth consumption. This also translates into more intelligent and robust network designs (e.g., physical and logical meshes, fine-grained QoS controls) as subscribers rely more on network access for day-to-day activities. As for the cloud in general and the overall effect:

  • Traffic starts to become more and more symmetrical (i.e., photos and videos automatically upload and then downloaded to all individual peer devices (e.g., your iPhone video uploads to the cloud and then syncs to your laptop and iPad)
  • Lots more bandwidth will be used. Today, content drives bandwidth demand (e.g., you open a browser and connect to a website, you launch your Facebook mobile app and upload photos). Tomorrow, those activities will happen automatically and continuously
  • Over the Air (OTA) updates to the phone are now downloaded over Wi-Fi or 3G/4G networks. Seemingly, updates are the only things that have changed, but it still amounts to about 150 MB per phone per update—another bandwidth driver
  • More prevalent use of video conferencing—low latency, sustained bandwidth demand

Therefore, the amount of bandwidth consumption will rise dramatically this September when Apple releases iOS 5 and iCloud. Android has already driven much bandwidth demand, but it’s not nearly as “sexy” as what Apple is releasing for its 220 million users—or alternately total iOS devices: iPod touch, iPad, iPhone). It’s more than just bandwidth—it’s quality, reliable bandwidth where QoS and Adaptive Modulation will play significant roles—of this, I’m certain.

At a recent TNMO event they were talking about LTE-Advanced and leveraging the cloud for virtual hard drives. Imagine, no physical hard drive in your computer. Laptops are connected via 4G wireless/5G LTE wireless to a cloud-based hard drive, equating to lots and lots of bandwidth plus stringent latency requirements….

Steve Loebrich
Director of Product and Solutions Marketing, Aviat Networks

Read More


Managing Wireless Networks with Element Management Systems

Management of Complexity

An EMS can be thought of as managing all the elements in a complex network, keeping them all in balance. Image by michael.heiss via Flickr

Managing a wireless network is essential. Radios, routers and third-party add-ons control vast amounts of valuable user data. Any wireless network downtime damages the user’s business and the operator’s long-term reputation. Thus, operators need a powerful but easy-to-use element management system (EMS) to monitor and administer all the disparate elements in their wireless communication networks.

Also, operators should be able to manage complete networks from a user-friendly interface, which must provide all the necessary information for fast network management system decision-making. And this system must be capable of complete standalone operation or being integrated into an operational support system using NorthBound Interfaces (NBIs).

Other additional functionality in the form of event management and notifications capability is also necessary in an EMS for wireless networks. An EMS should inform wireless operators about network events and device failures and let them to diagnose problems and apply network updates remotely. This reduces the time between a fault occurring and the fault being repaired. It may even allow a repair to be completed before a wireless link fails completely. For day-to-day management, operators need an EMS that can:

  • Deploy, manage and auto-discover wireless equipment—including all Aviat Networks devices, partner products and third-party devices
  • Display an entire network at once, via one of several map views
  • Provide an overview of network events
  • Deliver notifications of important network events
  • Enable analysis of network events, device events and performance data
  • Generate detailed reports on all aspects of a network
ProVision Screen Shot

The ProVision EMS solution can manage all Aviat Networks wireless solutions, partner wireless equipment and third-party devices from a user-friendly GUI.

Fortunately, such a carrier-class EMS solution does exist. Aviat Networks develops its ProVision EMS based on customer demand and continues to upgrade it as per user requests and requirements. For customers, implementing ProVision is vastly more efficient than developing an in-house EMS, saving time, resources and money. Aviat Networks EMS solutions are the most cost-effective way to manage wireless solutions. Aviat Networks works closely with customers to make sure that ProVision is user-friendly. The goal is that ProVision EMS allows operators to manage their networks proactively—rather than reactively—and with reduced network operating costs.

Look for future blog posts on must-have EMS data features and stats on operators using carrier-class EMS.

Mick Morrow
Sr. Product Marketing Manager, Aviat Networks

Read More


Backhaul for the Mobile Broadband or Wireless Broadband Network

iPad con dock y teclado inalámbrico

Image via Wikipedia

As 2G and 3G networks enter the upgrade path to 4G wireless, it will require that more than the base stations receive new wireless solutions. The path to LTE wireless—odds-on favorite to be the dominant 4G technology—is paved with increasing data demand from smartphones, iPads, other tablet PCs, electronic readers and probably some other intelligent mobile computing devices yet to be imagined.

All these devices will place throughput demands on the base stations, which in turn will place greater demands on the mobile backhaul network. Even as 4G devices place demands on mobile backhaul, the 2G and 3G technologies will be in place for sometime, coexisting in the same networks with 4G. In these situations, IP/Ethernet will be the next-generation networks‘ transport technology of choice.

Read More


Subscribe to our newsletter