Public Safety Broadband Stakeholders Have to Decide

PSCR-hosted-the-Public-Safety-Broadband-Stakeholder-Conference-June-4-6-2013-in-Westminster-ColoradoIn the effort to build out the nationwide Public Safety Broadband Network, stakeholders are making themselves heard. They were heard at the Public Safety Broadband Stakeholder Conference held last week, June 4-6, 2013, outside of Denver, Colo., hosted by the Public Safety Communications Research lab. It brought to the surface the many competing agendas local public safety network operators, the First Responder Network Authority (FirstNet), wired and wireless vendors and even mobile app developers contend with.

Aviat Networks had a chance to sit down with Tammy Parker, editor of FierceBroadbandWireless, during the conference to discuss some of these issues, such as the debate on the effectiveness of fiber optic technology in backhauling public safety networks. The fact is that microwave indeed will be a key element in the design and implementation of the FirstNet mission-critical network. And fiber does not provide the reliability and survivability needed. In the commercial mobile telecom space, the poor survivability of fiber is tolerated, but when it comes down to crunch time when lives are on the line, public safety operators will take microwave over leased fiber.

Randy Jenkins, Aviat director of business development, expanded on this vital decision for public safety operators to make between microwave and fiber. “As a vendor vested in the public safety community for more than 50 years, Aviat understands its responsibility to find innovative ways of offering microwave solutions that can save CAPEX and OPEX in support of the biggest challenge FirstNet is addressing—not enough money. Aviat is bringing backhaul innovation to this program.”

The bottom line is that backhaul is always the bottleneck in any network planning. In that case, it’s important for public safety operators to address that aspect first, according to Tony Ljubicich, Aviat’s vice president of sales and services.

If you would like to hear more about how Aviat Networks is making microwave backhaul the best choice for FirstNet-ready public safety, leave your contact information and reference the upcoming webinar on public safety broadband backhaul for a major statewide network. We’ll let you know when it’s scheduled.

Read More


Know Your Microwave Backhaul Options

If you look in the November issue of MissionCritical Communications, you will see an article by Aviat Networks director of marketing and communications, Gary Croke. In his article “Know Your Microwave Backhaul Options,” Gary covers:

  • Benefits of using indoor, outdoor and split-mount microwave radios in various scenarios
  • Rationale for choosing microwave over fiber (especially for LTE)
  • Deployability of microwave
  • Software-upgradeable capacity for “pay-as-you-grow” capex scalability
  • Cost contribution of towers over the first 10 years of LTE implementation
  • And more

You can read Gary’s article (on page-30) here—MissionCritical Communications—November 2012.

Related articles

Read More


APCO 2012: Broadband for Public Safety in Sight

It is August and Minneapolis, Minn., is readying itself for the annual gathering for the APCO show. However, this year, the Association of Public-Safety Communications Officials (APCO) show will be much different as the promise of broadband for public safety is now within sight! But before we start the sprint to the finish line, we still have some hurdles left to overcome:

  • FirstNet board decisions on network requirements and vendor choices for implementation      (that is once a board is in place)
  • States definition of needs requirements including cooperative agreements between states      and local municipalities

We will hear how systems integrators are developing business models that help limit the OPEX costs for the networks and bring the critical technical LTE skills to the party.

With very difficult financial limitations, innovation and teamwork will be required to make this network work. Look for vendors that bring new ideas to the game that help address these monetary challenges. How do we help limit CAPEX and OPEX while still offering the outstanding reliability/performance required of a mission critical network?

Aviat Networks knows backhaul will play a much larger role in the financial measures of the broadband network (perhaps as much as 30 percent of CAPEX)! Our solutions take advantage of existing deployed backhaul radios in public safety networks (more than 18,000 radios deployed in state/local networks today) and those of our competitors (estimated in excess of 30,000 radios). “Reuse—whenever possible” must be part of every conversation.

In addition, Aviat Networks’ ProVision monitoring/management platform and NOC Managed Services allow the state/local entity to much more cost effectively maintain their networks…to mission-critical standards. OPEX savings of more than 25 percent may be achieved by being able to predict problems before they occur and to be able to quickly diagnose and address them when they do occur. IP networks involve more complex failure mechanisms than TDM networks. Aviat Networks’ Advanced NOC Services capability offers the IP insight needed to fully understand loading, demand changes, networking issues quickly and avert bottlenecks before they occur.

If you would like to hear more on any of these topics, I invite you to come and see us at APCO.

Randy Jenkins
Director Business Development
Aviat Networks

Read More


FCC Rule Changes Lower the Cost of Microwave Deployments

Logo of the United States Federal Communicatio...

Last Friday, 03 August 2012 saw the release of FCC Report and Order 12-87, which contained some significant changes that will lower the total cost of ownership for many microwave links. The two most significant changes concern antenna sizes and wider bandwidths.

Following lobbying by Comsearch and the Fixed Wireless Communications Coalition (FWCC), within which Aviat Networks plays an important role, the FCC has allowed an additional alternative set of antenna parameters to be used in the 6, 18 and 23GHz bands. These new parameters are an alternative to the existing antenna parameters, which have been retained. It is worth noting that while the FCC does not specify actual antenna sizes, the realization of antennas based upon these new parameters does represent a reduction in size and thus provides for the reduced cost of both CAPEX and OPEX that has already been championed by Aviat Networks and other interested parties. The new working alternative antenna parameters are as follows:

  • 3 feet for the 6GHz band
  • 1 foot for the 18GHz band
  • 8 inches for the 23GHz band

To put these changes into perspective the typical cost of renting space for an antenna on a tower is US$400 + US$100 per foot (diameter) per month. So a link consisting of two 6ft antennas will cost 2x (400 + 6×100) = $2000 per month, i.e. $24,000 per annum.

If the antenna diameter could be reduced to 3 feet the cost is reduced to 2x (400 + 3×100) = $1400 per month, i.e. $16800 per annum—a saving of $7200 per year on a single link!

The above calculations are not only ours but also those of MetroPCS, which is quoted in the report and order. MetroPCS specifically notes, as an example, that “the cost of a microwave dish antenna is approximately $100 per foot per month. Thus, even if the revised rule allows for a reduction of just one foot, the annual savings would be $1,200, and the savings over a ten year period would be $12,000.”

Smaller antennas also open up more options in terms of locations for these antennas, and their smaller size reduces wind loading and the need for specialist mountings and strong towers.

Additionally, the FCC in a further notice of proposed rule making attached to this report and order seeks feedback on allowing similar alternative antenna parameters in the 11 and 13GHz bands. Aviat Networks intends to support this proposal via the FWCC.

Other Changes

With the ever-growing demand for bandwidth the FCC has decided to allow aggregation of two 30MHz channels in the 6GHz band and two 40MHz channels in the 11GHz band, giving maximum bandwidths of 60MHz and 80MHz, effectively allowing a doubling of the capacity of a microwave link. This represents another significant cost saving because this increased capacity can be achieved with the same amount of hardware.

Also in this report and order were changes to the definition of efficiency standards to a bits/sec/Hz standard as proposed by the FWCC, and a clarification of the definition of payload capacity: “The bit rate available for transmission of data over a radiocommunication system, excluding overhead data generated by the system.” The FCC has also introduced a welcome simplification of the rules with regard to bit rate efficiency. FCC Part 101.141 has been amended to include a table (below) that details the efficiency criteria according to two frequency ranges and three bandwidth ranges:FCC new bits/sec/Hz efficiency standard

Aviat Networks welcomes the FCC’s progressive changes as the amendments will stimulate the microwave industry and enhance the cost effectiveness of microwave networks across the United States. We expect the rule changes to be effective approximately in October.

Ian Marshall
Regulatory Manager
Aviat Networks

Read More


Is the Backhaul Really the Bottleneck for LTE?

Is Backhaul the LTE Bottleneck?The popularity of smartphones and tablets, motivated by the launch of the iPhone (2007) and the iPad (2010) have created a dramatic increase in mobile data consumption. The need to provide higher throughputs at the base station level to serve this demand has concerned operators, equipment vendors and industry watchers about a possible bottleneck in the backhaul network.

The basis for this concern is that microwave technology will not be able to provide enough capacity, and that only fiber is able to meet the capacity needs of 4G/LTE networks. This apprehension is being capitalized on by some optical network providers who argue that fiber connections are needed to provide gigabit levels at each base station. Although a gigabit connection in each base station is desirable, extremely high costs, slow deployment and inflexibility of fiber optic networks prevent this from being a viable option for operators who are CAPEX and OPEX constrained.

Aviat Networks’ studies, based upon our early involvement in some of the largest LTE network deployments, show that an average of 100 to 200 Mbps of backhaul capacity per LTE cell site is more than adequate and easily achievable with current microwave technologies. Read the white paper below or see our case study on a national U.S. LTE operator.

Read More


Wireless Services: Stepping Outside the ‘Box’

Map of Nigeria

Nigeria, in the heart of West Africa, is home to leading mobile operator MTN Nigeria and the hottest wireless carrier market on earth.

Customers are looking for partners who can do more than just provide them with “boxes.” To really partner with customers, sometimes you have to step outside of the box. Providing a comprehensive, advanced Spares Management Program solution to MTN NigeriaAviat Networks’ largest customer and a major Tier 1 mobile network operator in Africa—is a prime example of what can be accomplished when stepping outside of the box.

Challenging Environment

As many are aware, Africa represents a challenging operating environment where on a daily basis mobile operators have to contend with power outages, lack of infrastructure and a shortage of trained personnel. Due to these issues, MTN Nigeria was experiencing significant challenges with its spares management related to its overall installed base of network equipment. This included having more spares than were needed but never having the right spare in the right place at the right time.

Even though the customer had a large supply of spares as part of capital expenditures, it was actually very difficult to keep track of the physical inventory. In this situation, MTN Nigeria asked its suppliers to manage the problem. Each supplier was to take accountability for owning and managing the problem for the customer.

For more, see the complete customer success story.

Ross Gillette
Director of Services, Africa, Aviat Networks

Read More


Small Cell Mobile Backhaul: The LTE Capacity Shortfall

With immense mass-market demand for mobile broadband services, and emergence of new high-capacity mobile devices (e.g., smartphones, tablets) and applications, many of the world’s most advanced mobile networks are struggling to deliver a high-quality consumer experience. Explosion of per-user data consumption, combined with subscriber growth and mobility needs, is putting today’s networks are under tremendous pressure. In addition, as operators continuously evolve networks with the latest technology (e.g., 2G, 3G, 4G) to meet these capacity and coverage demands, network costs are exploding and operators are struggling to keep up profitable businesses.

LTE, representing a 4x capacity improvement over current 3G networks, on its own will be insufficient to address all future capacity demands, as mobile data traffic will double every year equating to a 32x growth by 2014 (Figure 1).

32x backhaul capacity demand jump

Figure 1: The forecast 32x jump in data demand cannot be met alone by LTE, which can only offer a 4x increase over current wireless technologies.

Increasing spectral efficiency with new versions of LTE will help manage the shortfall, but these solutions are not yet available and again will not provide the volume of capacity necessary. Acquiring more spectrum would help but additional spectrum is costly and in most cases not available. Traffic management approaches such as caching and mobile data offloading are emerging to help manage the load but because of limited cache hit rates, these solutions will be insufficient to address the capacity shortfall. Offload techniques, such as in-home femto cells and mobile offload gateways, are emerging to reduce load on mobile infrastructure, but again they will be insufficient. A new approach is required.

Emergence of Small Cells

To meet these capacity challenges, and address ever-prevalent coverage issues, new small cell network architectures are emerging based on a new generation of low power, small cell (i.e., micro, pico, femto) mobile base stations. ABI Research estimates 4 million pico base stations will be shipped per year by 2015. Being deployed into an existing network on lampposts, utility poles and building walls, these base stations offer a way for operators to meet challenges of urban, suburban and in-building locations. Combined with existing base station infrastructure, these small cells are transforming the flat macro mobile network into a multi-level, hierarchical radio access network (Figure 2).

Macro, Pico & Femto base stations

Figure 2: Combined with existing macro base station infrastructure, small cells are transforming the flat mobile network into a multi-level, hierarchical radio access network.

Small Cell Backhaul: Wired or Wireless

When considering IP mobile backhaul options, operators must first ponder the choice between wireline or wireless solutions. There is generally no “one-size-fits-all” solution, and in reality we’re likely to see a mix of mobile backhaul technologies deployed to meet the small cell backhaul challenge. However, because of challenging utility pole and lamppost deployments, operators cannot count on fixed line options (e.g., fiber, cable, copper/DSL) being ubiquitously available. Moreover, more than 40 percent of the world’s macrocell base stations are backhauled wirelessly and because of these challenging locations, we’re likely to see a much higher percentage of wireless-based backhaul in small cell applications.

Wireless Backhaul for Small Cells: Challenges

Small cell deployments present a number of challenges—not the least of which is impact on mobile backhaul. Operators—and equipment vendors—must consider the key factors below when selecting (and designing) wireless backhaul solutions for small cells:

Lower cost solutions needed—Smaller cells mean more cells and thus more mobile backhaul. To meet overall cost objectives, lower cost backhaul solutions will be required to make sure small cells can be deployed cost effectively. Typical macrocell backhaul CapEx is about 50 percent of the total base station CapEx, and similar ratios will be required to ensure a cost-effective solution.

Space-optimized solutions required—To improve street-level coverage and capacity, small cells are being deployed on lampposts and utility poles. These challenging deployment locations place demands on the physical attributes of backhaul solutions. Unlike traditional cellsites, typical dish antennas will not be feasible for such deployments. In addition, because of space constraints and operations costs, backhaul and base station hardware integrated into common enclosures would be ideal.

Line-of-Sight (LOS) not possible—Street level, metro area deployments mean line of sight to backhaul hub locations are not always—in fact—rarely possible. Requiring large antennas, combined with lack of LOS characteristics, makes traditional point-to-point wireless backhaul ineffective for most small cell backhaul applications.

Interference must be carefully managed—When it comes to wireless backhaul solutions, close proximity of cellsites creates possible interference issues for the backhaul system. These interference issues are relatively new for backhaul systems and need to be considered.

High-capacity solutions required—Driven by increasing demand for mobile data, backhaul requirements for small cells are expected to approach macro cell capacity requirements (50-100Mbps per cellsite) in the next three years.

Which challenges matter most will depend heavily on how small cells eventually are deployed. Stay tuned for a followup blog post where I discuss small cell backhaul deployment options and available solutions to address these needs. In the meantime, feel free to leave me your thoughts, or comments.

Gary Croke
Sr. Product Marketing Manager, Aviat Networks

Read More


RAN Capacity Optimization Through IPoTDM Microwave Transport

This brief white paper summarizes how an IP-over-TDM (IPoTDM) approach can facilitate microwave network evolution to all-IP, consolidate the transport and management of circuit- and packet-based wireless network services in a single physical RAN infrastructure, and allow operators to address CAPEX and OPEX cost challenges by leveraging existing TDM transport resources to the maximum extent possible.

Read More


Subscribe to our newsletter